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Oligonucleotide and complementary DNA microarrays are being
used to subclassify histologically similar tumours, monitor disease
progress, and individualize treatment regimens1–5. However,
extracting new biological insight from high-throughput genomic
studies of human diseases is a challenge, limited by difficulties in
recognizing and evaluating relevant biological processes from
huge quantities of experimental data. Here we present a structured
network knowledge-base approach to analyse genome-wide tran-
scriptional responses in the context of known functional inter-
relationships among proteins, small molecules and phenotypes.
This approach was used to analyse changes in blood leukocyte
gene expression patterns in human subjects receiving an inflam-
matory stimulus (bacterial endotoxin). We explore the known
genome-wide interaction network to identify significant func-
tional modules perturbed in response to this stimulus. Our
analysis reveals that the human blood leukocyte response to
acute systemic inflammation includes the transient dysregulation
of leukocyte bioenergetics and modulation of translational
machinery. These findings provide insight into the regulation of
global leukocyte activities as they relate to innate immune system
tolerance and increased susceptibility to infection in humans.

Inflammation is a hallmark of many human diseases6–8. We focus
on blood leukocytes and other tissues of critically injured patients, in
order to better elucidate the mechanisms underlying systemic
inflammatory responses9. This approach cannot be fully replicated
using animal models or human cell lines, and studies of injury in
humans can be complicated by antecedent illnesses and concurrent
treatment regimes that may alter the recovery process. To our
knowledge, no study has evaluated the genome-wide response to
systemic inflammation in the context of a fully predictable recovery.
Here we combine genome-wide expression analysis with a new
bioinformatics method to identify functional networks responsible
for the systemic activation and spontaneous resolution of a well-
defined inflammatory challenge.

Gene expression in whole blood leukocytes was determined
immediately before and at 2, 4, 6, 9 and 24 h after the intravenous
administration of bacterial endotoxin to four healthy human sub-
jects. Four additional subjects were studied under identical con-
ditions but without endotoxin administration. The infusion of

endotoxin activates innate immune responses and presents with
physiological responses of brief duration10. Notably, there is an initial
proinflammatory phase and a subsequent counterregulatory phase,
with resolution of virtually all clinical perturbations within 24 h.
K-means cluster and principal component analyses were first used

to visualize the overall response to endotoxin administration. Figure
1a reveals probe sets clustered byK-mean analysis, where each bin has
a distinct endotoxin-induced temporal pattern. The signal intensity
of 5,093 probe sets—representing 3,714 unique genes—out of a total
of .44,000 probe sets changed significantly in response to endo-
toxin, whereas no significant changes were observed in control
subjects (estimated false discovery rate ,0.1%). Of the 5,093 probe
sets identified, over half showed reduced abundance at 2, 4, 6 and 9 h,
returning to baseline by 24 h (see bins 0–4). In contrast, a smaller
number of probe sets were induced by 2 h (bins 5, 6), and the
remaining probe sets showed a delayed response, peaking at 4–9 h but
returning to baseline by 24 h (bins 7–9).

Cluster and principal component analyses describe overall changes
in apparent gene expression, but provide few insights into the
biological processes and signalling networks invoked in propagation
and resolution of the inflammatory response. Identifying the per-
turbed biological networks underlying this complex clinical pheno-
type requires systematic analysis in the context of known mammalian
biology, derived from basic and clinical research.

Using a web-based entry tool developed by Ingenuity Systems Inc.,
findings presented in peer-reviewed scientific publications were
systematically encoded into an ontology by content and modelling
experts. Using over 200,000 full-text scientific articles, a knowledge
base of more than 9,800 human, 7,900 mouse and 5,000 rat genes was
manually curated and supplemented with curated relationships
parsed from MEDLINE abstracts. A molecular network of direct
physical, transcriptional and enzymatic interactions observed
between mammalian orthologues—the observed ‘interactome’—
was computed from this knowledge base. The resulting network
contains molecular relationships involving over 8,000 orthologues
with a high degree of connectivity. On average, individual genes have
11.5 interaction partners (median 4.0), of which 7.2 represent direct
physical interactions (median 3.0). Every gene interaction in the
network is supported by published information. For example, the
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immediate neighbourhood for the RELA gene (NF-kB p65, Sup-
plementary Fig. 1) includes 150 genes and 619 direct interactions,
derived from 7,118 findings curated from 847 published articles.

The observed interactome provides a framework for structuring
the existing knowledge regarding mammalian biology, and enables a
new analytical approach that objectively examines experimental data
in the context of known genome-wide interactions in order to
identify significant functional modules. This method is applicable
to data of high-throughput platforms such as microarray expression
profiling, polymorphism analysis and proteomics. Furthermore, the

original literature detailing the genetic interactions can be accessed to
further examine and verify the findings.

For a better understanding of the temporal response of gene
expression in the innate immune system, we constructed a proto-
typical inflammatory cell containing 292 representative genes and
detailing all direct interactions in our database (Fig. 2). Closer
inspection of the temporal response reveals the fine structure of
dynamic changes in RNA abundance by highlighting the transient
and self-limiting nature of this response. As an example, the apparent
expression of several secreted proinflammatory cytokines and che-
mokines (TNFSF2 (TNF), IL1A, IL1B, CXCL1 (GROa), CXCL2
(GRO-b), CCL2 (MCP-1), CXCL8 (IL-8) and CXCL10) reached a
maximum 2–4 h after endotoxin administration, consistent with
early activation of innate immunity. Subsequently, the expression
of several members of the nuclear factor kappa/relA family of
transcription factors (NFKB1, NFKB2, RELA and RELB) reached
their zenith.

The time period 4–6 h after endotoxin injection seemed critical, as
the expression of a number of transcription factors was increased,
including both those that initiate and those that limit the innate
immune response. In the former group, these included the signal
transducer and activators of transcription (STAT genes), and the
cAMP-response element-binding protein (CREB) and CCAAT/
enhancer binding protein (CEBP) gene families. Transcription fac-
tors limiting the innate immune response included suppressor of
cytokine signalling 3 (SOCS3) and IKBK genes. There was also a delay
(4–6 h) in increased mRNA abundance of secreted and membrane-
associated proteins that limit the inflammatory response, including
IL1RAP, IL1R2, IL10 and TNFRSF1A. Together, these data compre-
hensively document the temporal modulation of genes controlling
the innate immune response in a human model that progresses
from an acute proinflammatory phase to unencumbered counter-
regulation, concluding with full recovery and a normal phenotype.

To further elucidate the global changes during inflammation and
subsequent return to homeostasis, we sought to computationally
decipher the principal networks involved. The specificity of connec-
tions for each gene was calculated, as defined by the percentage of its
direct connections to other genes showing significant transcriptional
changes. A network pathway was initiated by the gene with the
highest specificity of connections, and was propagated according to
the descent of the specificity. Individual significant pathways ident-
ified by a statistical likelihood calculation (P , 0.0001) were merged
to represent the biological processes.

Our global representation of the inflammatory response to endo-
toxin, shown in Fig. 3a, comprises a network of 1,556 genes and their
interactions. This network consists of a subset of 1,214 genes (78%)
responsive to in vivo endotoxin administration, and 342 additional,
highly interconnected genes. The gestalt of the temporal response to
endotoxin is suggested at the level of interconnecting functional
modules, which could not be readily extracted from the experimental
data alone (Fig. 1). Simultaneous survey and evaluation of the sub-
network regions enables us to identify new endotoxin-responsive
modules in addition to the innate immunity network described
above. Examples of the diversity in such modules include (a)
increased expression of components of the superoxide-producing
phagocyte NADPH-oxidase system, a multicomponent enzyme
important for host defence11, (b) decreased expression of the major
histocompatibility (MHC) II complex, consistent with reduced
antigen presentation following endotoxin stimulation12,13, (c)
decreased expression of the TCP1 ring complex required for folding
of cytoskeletal proteins, (d) increased expression in the family of
tubulin-A microtubule genes, (e) suppressed expression of several
subunits of the anaphase-promoting complex, which has a key role in
cell-cycle regulation, and (f) reduced integrin-a and -b chain
expression, affecting cell–cell and cell–matrix adhesion (see Sup-
plementary Methods 2, containing Supplementary Fig. 3a–f).

Further, significant decreases in messenger RNA abundance were

Figure 1 | Gene expression profiles of circulating leukocytes in response to
bacterial endotoxin infusion. Samples from eight healthy volunteers were
tested at baseline (0 h) and 2, 4, 6, 9 and 24 h after intravenous
administration of endotoxin (four subjects) or vehicle (four subjects).
a, Significant (false discovery rate of ,0.1%) probe sets (5,093) were
subjected toK-means clustering into ten bins (0–9). Probe sets for which the
abundance was above the mean are shown in red, below themean are shown
in blue, and equivalent to themean are inwhite. b, Principal component plot
of the significant probe sets at the indicated times after endotoxin
administration.
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Figure 2 | Pathway analysis of representative genes involved in innate
immunity. A prototypical inflammatory cell was constructed from 292
representative genes involved in inflammation and innate immunity. Genes
for which the expression statistically increased from baseline are coloured
red, those for which expression decreased are shown in blue. a, Composite

changes in apparent expression over 24 h, identifying nodes and
interactions. b, Temporal changes in apparent expression. The response to
endotoxin administration in blood leukocytes can be viewed as an integrated
cell-wide response, propagating and resolving over time.
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Figure 3 | Network representation of the biological processes underlying
the temporal response of blood leukocytes to in vivo endotoxin
administration. a, The network consists of 1,214 genes showing perturbed
expression, and 342 genes highly interconnected to this group (red,
increased; blue, decreased expression). b, Selected regions of the network,
highlighting several groups of genes. Group 1, mitochondrial respiratory
chain complex I (NDUF genes). Group 2, mitochondrial respiratory chain

complex III (UQCR genes). Group 3, ATP synthase complex (ATP5 genes).
Group 4, pyruvate dehydrogenase complex. Group 5, mitochondrial
permeability transition pore complex. Group 6, elongation initiation factor
complex (EIF3 genes). Group 7, ribosomal proteins (RPL, RPS genes).
Group 8, COP9 signallosome (COPS genes). Group 9, proteasome (PSM
genes).
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observed in the mitochondrial respiratory chain complexes I–V
(NDUF in Fig. 3b (Group 1), UQCR (Group 2) and ATP synthase
genes (Group 3)). Gene expression was also decreased in the pyruvate
dehydrogenase complex (PDH, Fig. 3b, Group 4), which generates,
via acetyl-CoA and the tricarboxylic acid (TCA) cycle, reduced
coenzymes required for ATP synthesis during mitochondrial oxi-
dative phosphorylation. A concomitant increase in expression of
pyruvate dehydrogenase kinase-3 (PDK3), an inhibitor of PDH, was
observed. Expression of the voltage dependent anion channel
(VDAC) and adenine nucleotide translocator (SLC25A5), com-
ponents of the mitochondrial permeability transition pore (MPTP)
complex, were decreased to similar extents, whereas expression of the
antagonistic benzodiazepine receptor (BZRP) was increased (Fig. 3b,
Group 5). MPTP activation has previously been considered an early
event in apoptosis, leading to mitochondrial membrane depolariz-
ation and release of cytochrome c. However, recent reports have
indicated a primary role for MPTP activation in oxidative-stress- and
calcium-overload-induced necrotic cell death14,15. Thus, reduction in
transcripts for MPTP components is consistent with a protective
response to the oxidative stress associated with endotoxin challenge.

As active secretory cells, leukocytes devote a substantial amount of
energy expenditure to protein synthesis16. In concert with the
suppression of modules participating in energy production,
expression was decreased for the elongation initiation factor complex
(EIF3 in Fig. 3b, Group 6), a large number of ribosomal proteins
(RPS, RPL genes in Fig. 3b, Group 7), the RNA polymerase II
complex, and also in the functional modules of the ATP/ubiquitin-
dependent protein degradation pathway, the COP9 signallosome
(Fig. 3b, Group 8) and the proteasome (PSM genes in Fig. 3b, Group
9).

Here we use a knowledge-based network analysis to reveal con-
certed dysregulation of functional modules in mitochondrial bioe-
nergetics, protein synthesis and protein degradation in human blood
leukocytes during an abbreviated and self-limiting episode of inflam-
mation. These findings document a reprioritization of the transcrip-
tional regulatory programme in leukocytes in response to endotoxin.
Furthermore, the marked suppression of these important functional
networks suggests that leukocytes exposed to inflammatory stimuli
may have an altered capacity to sustain subsequent immune chal-
lenges, as observed during innate immune system tolerance.

Human disease phenotypes are manifested by the malfunctioning
of multiple functional modules interrelated in physiological regulat-
ory systems. The overwhelming diversity of possible genome-wide
interactions and gene expression patterns limit effective learning
from experimental data alone. Network analyses using comprehen-
sive knowledge of mammalian biology can greatly reduce the
hypothesis space, enabling identification of new functional modules
perturbed in the disease process. Here we demonstrate that, upon
acute systemic inflammation, the human blood leukocyte response
includes widespread suppression at the transcriptional level of
mitochondrial energy production and protein synthesis machinery.
A decrease in high-energy substrates has been observed in the muscle
and liver of critically ill patients, and in animal models of sepsis, burn
injury and endotoxemia17–19. In addition, direct disruption of mito-
chondrial complexes by cellular-stress-derived mediators (for ex-
ample, reactive oxygen species) has been suggested for necrotic cell
death in animal models of sepsis20 and reperfusion injury14,15.

The erosion in functional networks identified above represents a
normal adaptive process aimed at re-establishing homeostasis, and
yet might contribute to global leukocyte defects—such as tolerance
and increased susceptibility to infection—observed in critically
injured patients. These perturbations in functional modules are at
the level of mRNA transcripts, and will require subsequent confir-
mation at the protein level. Further identification of the specific cell
populations showing these changes in gene expression will require
the isolation and enrichment of specific leukocyte subpopulations.
Finally, it will be important to confirm whether patients manifesting

systemic inflammation show similar perturbations of the functional
modules identified here as do otherwise healthy, endotoxin-chal-
lenged subjects.

METHODS
Human endotoxin model. Eight healthy male and female subjects between 18
and 40 years of age provided written informed consent. Details of endotoxin
administration to human subjects have been summarized elsewhere10,21. Subjects
were intravenously administered either NIH Clinical Center Reference Endo-
toxin, (CC-RE-Lot 2) at a dose of 2 ng kg21 body weight (n ¼ 4, one female and
three males) or 0.9% sodium chloride (n ¼ 4, one female and three males) over a
5-min period. Blood samples were collected before endotoxin infusion (0 h) and
2, 4, 6, 9 and 24 h after infusion.
Blood sampling. Blood was collected and lysis buffer (bicarbonate-buffered
ammonium chloride solution, 0.826% NH4Cl, 0.1% KHC03, 0.0037% Na4EDTA
in H2O) was added at a ratio of 20:1 (lysis buffer:blood). Samples were then
incubated at room temperature until erythrocyte lysis was complete (,5–
7 min). Leukocytes were recovered by centrifugation (400 g, 4 8C) and washed
once in ice-cold phosphate buffered saline. Leukocyte pellets were then resus-
pended in 8 ml RLT buffer (Qiagen) and the samples sheared ten times with an
18-gauge needle attached to a 10-ml syringe. Samples were then immediately
frozen and kept at 270 8C until RNA extraction was required.
Leukocyte RNA isolation. Total cellular RNA was isolated from the leukocyte
pellets using a commercial kit (RNeasy, Qiagen). Purity was confirmed by
spectrophotometry (A260/A280 ratio) and capillary electrophoresis (Agilent 2100
Bioanalyser, Agilent Inc).
cRNA synthesis and chip hybridization. cRNA synthesis was performed using
4 mg total cellular RNA, hybridized onto Hu133A and Hu133B oligonucleotide
arrays (Affymetrix), and processed according to the protocol outlined by
Affymetrix, with a few modifications.
Microarray data analysis. A total of 44,924 probe sets on the Hu133A and
Hu133B arrays were analysed. Normalization was performed using dChip22, and
expression level was modelled using the perfect match only model. Probe sets
identified as absent on all arrays (using MicroArray Suite v5, Affymetrix) were
not included in further analysis. Probe sets significantly perturbed after bacterial
endotoxin administration were identified using significance analysis of micro-
arrays (SAM) (multiclass response)23, with an estimated false discovery rate of
,0.1% on the basis of 1,000 permutations. The resulting 5,093 probe sets were
subjected to K-means clustering to ten bins using Cluster and TreeView24, and
principal component analysis. The same analysis was applied to control data, but
no temporal changes of the probe sets reached the significant level (false
discovery rate ,0.1%). A total of 3,714 unique genes were identified from
4,895 probe sets with mapped Entrez GeneIDs (http://www.ncbi.nih.gov/Entrez/).
More information is at http://www.gluegrant.org/.
Verification of genes showing significant transcriptional changes. An
additional six healthy subjects (one female and five males) were administered
2 ng kg21 (body weight) endotoxin, and blood samples were collected before
(0 h) and after (2 and 6 h) endotoxin infusion. At either 2 or 6 h, ,88% of the
significant probe sets in the initial study were again identified as significant (false
discovery rate ,1%). See Supplementary Methods 1.
Development of the observed interactome of mammalian genes. The Inge-
nuity Pathways Knowledge Base (KB) is the largest curated database of
previously published findings on mammalian biology from the public literature
(Ingenuity Systems). Reports on individual studies of genes in human, mouse or
rat were first identified from peer-reviewed publications, and findings were then
encoded into an ontology by content and modelling experts. Manual extraction
and curation probably results in more specific and comprehensive interactions,
with far fewer false-positives than automated alternatives (for example, natural
language processing and high-throughput screening).

Network analysis using the knowledge base was used to further identify direct
interactions between mammalian orthologues. For example, the knowledge of
functional interactions (for example, phosphorylation) was combined with
knowledge of protein functions (for example, kinase activity) to algorithmically
infer a direct biochemical interaction. Every resulting gene interaction has
supporting literature findings available online. More information is in Sup-
plementary Methods 2.
Identification of significant pathways in biological processes. The following
steps were used: (1) Genes identified as significant from the experimental data
sets were overlaid onto the interactome. Focus genes were identified as the subset
having direct interaction(s) with other genes in the database. (2) The specificity
of connections for each focus gene was calculated by the percentage of its
connections to other significant genes. The initiation and growth of pathways
proceeded from genes with the highest specificity of connections. Each pathway
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had a maximum of 35 genes. (3) Pathways of highly interconnected genes were
identified by statistical likelihood using the following equation:

Score ¼2log10 12
Xf21

i¼0

CðG; iÞCðN2G; s2 iÞ

CðN; sÞ

 !

where N is the number of genes in the genomic network, of which G are focus
genes, for a pathway of s genes, f of which are focus genes. C(n,k) is the binomial
coefficient. (4) Pathways with a score greater than 4 (P , 0.0001) were
combined to form a composite network representing the underlying biology
of the process.
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