Acute Kidney Injury

Kavitha Vellanki, MD
kpotluri@lumc.edu
www.kidney.org

Technical Definition: AKI

The KDIGO guidelines define AKI as follows:

1. Increase in serum creatinine by ≥0.3 mg/dL within 48 hours
2. Increase in serum creatinine to ≥1.5 times baseline, which is known or presumed to have occurred within the prior seven days
3. Urine volume <0.5 mL/kg/hour for six hours

The diagnostic criteria should only be applied after volume status has been optimized. Urinary tract obstruction needs to be excluded if urine volume is used as a sole criteria.

Staging System of AKI

<table>
<thead>
<tr>
<th>Stage</th>
<th>RIFLE CRITERIA</th>
<th>Urine Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Risk</td>
<td>Increase in serum creatinine to 1.5 to 1.9 times baseline, or increase in serum creatinine by ≥0.3 mg/dL.</td>
<td>Reduction in urine output to <0.5 mL/kg/hour for 6 to 12 hours</td>
</tr>
<tr>
<td>2. Injury</td>
<td>Increase in serum creatinine to 2.0 to 2.9 times baseline</td>
<td>Reduction in urine output to <0.5 mL/kg/hour for ≥12 hours</td>
</tr>
<tr>
<td>3. Failure</td>
<td>Increase in serum creatinine to 3.0 times baseline, or increase in serum creatinine to ≥4.0 mg/dL or the initiation of renal replacement therapy in patients <18 years, decrease in estimated glomerular filtration rate (eGFR) to <35 mL/min/1.73 m².</td>
<td>Reduction in urine output to <0.3 mL/kg/hour for ≥24 hours, or anuria for ≥12 hours</td>
</tr>
</tbody>
</table>
Hospital discharge status of first hospitalization for Medicare patients aged 66+ with or without diagnosis of AKI during stay, 2014

Without diagnosis of AKI during stay

With diagnosis of AKI during stay

CAUSES OF AKI

Prerenal Causes

- Absolute ↓ in ECV
 - Volume depletion
 - Hemorrhage

- Relative ↓ in ECV
 - Heart Failure
 - Cirrhosis

- Impaired renal autoregulation with low ECV
 - NSAIDS
 - ACEI/ARBs

- Vasoconstriction /Oclusion
 - Hyperparathyroidism
 - Calcineurin inhibitors
 - Renal artery stenosis
LOW ECV: RENAL AUTOREGULATION

RENAL AUTOREGULATION IN LOW ECV AND NSAID USE

RENAL AUTOREGULATION IN LOW ECV AND ACEI/ARB USE
RENAL AUTOREGULATION IN LOW ECV, NSAID AND ACEI/ARB USE

Prerenal Azotemia

• Can complicate any clinical scenario with decreased effective circulating volume (true or relative).
• Generally, reversible with treating the underlying etiology.
• If unable to correct in a timely manner, can progress to ischemic ATN.
• Pre renal azotemic and ischemic ATN thought to cause up to 75% of AKI in the hospitalized setting.

Post-renal Failure

Upper Urinary Tract Obstruction:
Causes: Intrinsic obstruction of ureters from stones or extrinsic compression by retroperitoneal fibrosis or tumors.
Bilateral obstruction with superimposed infection is a medical emergency.

Lower Urinary Tract Obstruction:
Most common in-hospital cause of obstruction.
Pain meds are common culprits.
Enlarged prostate most common cause in general.
Post-renal Failure

- Diagnosis: H/o ↓ urine output (not always reliable)
 - Physical exam: suprapubic fullness
 - Ultrasound: hydronephrosis or enlarged bladder
 - Bladder scan to check for post-void residual
- Treatment: Relieve the obstruction
 - Need to monitor for post-obstructive diuresis
 - Urine output may be > 5-6 liters
 - Patients can develop hypernatremia if unable to drink water (intubated/sedated/elderly)

Intrinsic Renal Failure

- Glomerulonephritis
- Eclampsia
- Malignant HTN
- Acute Tubular Necrosis
- Acute Interstitial Nephritis
- Acute Pyelonephritis

Acute Tubular Necrosis

- Ischemic
- Toxic
ACUTE TUBULAR NECROSIS

RENAL

TUBULI
GLomeruli
INTERSTITIUM
BLOOD VESSEL
COLLECTING SYS

ISCHEMIC

PROLONGED PRERENAL STATE

EXOGENOUS

ENDOGENOUS

SOMETHING GIVEN TO THE PATIENT

ANTIBIOTICS
CANCER DRUGS
IODINATED CONTRAST MEDIUM
MANNITOL
CONTRAST INDUCED NEPHROPATHY

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Clinical Features</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Age</td>
<td>Increase in serum creatinine 48-72 hours after contrast exposure</td>
<td>Prevention is the key.</td>
</tr>
<tr>
<td>Underlying CKD</td>
<td>Initially non-oliguric</td>
<td>IV fluids pre and post contrast exposure</td>
</tr>
<tr>
<td>Type II DM</td>
<td>Generally non-oliguric</td>
<td>Stop diuretics and ACE/ARB where appropriate</td>
</tr>
<tr>
<td>Volume depletion</td>
<td>Initially pre-renal urine indices with high urine specific gravity ultimately leads to ATN</td>
<td>Supportive medical management and in some cases, may need dialysis support.</td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concomitant use of nephrotoxic agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence reported: 0.6 to 2.3% but higher if risk factors present</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACUTE TUBULAR NECROSIS

- Acute Tubular Necrosis
- ISCHEMIC
- PROLONDED PERRENAL STATE
- ENDOGENOUS
- SOME THING THE BODY PRODUCES IN EXCESS
- MYOGLOBIN - RHABDO
- LIGHT CHAINS - MYELOMA
- HEMOGLOBIN - HEMOLYSIS

Tumor Lysis Syndrome: Lysis of tumor cells post chemotherapy exposure. The higher the tumor burden, the greater the risk.

PATHOGENESIS OF ATN

Muddy brown casts
ATN – CLINICAL COURSE

- **INITIATION PHASE:** (hours to days)
 Evolving tubular injury
 Potentially reversible if diagnosed early
- **MAINTENANCE PHASE:** (typically 1-2 weeks)
 May be prolonged to 1-3 months in some cases
 Established renal injury
 Generally oliguric during this phase
 Muddy brown urine with casts noted in sediment
- **RECOVERY PHASE:**
 Repair and regeneration of tubules.
 Polyuric phase and if patient is intubated/no access to free water, at risk for hypernatremia, replace 1/2-1/3 of UOP with hypotonic fluid.
 At risk for CKD despite recovery.

ACUTE GLOMERULONEPHRITIS

- Unexplained renal failure
- Can be hypertensive
- Subnephrotic range proteinuria, >3.5 gm/day
- Active urine sediment with +ve blood, protein, WBC, dysmorphic RBC and RBC casts.
- Kidney biopsy for definitive diagnosis
- Post Strep GN
- Lupus Nephritis
- ANCA Vasculitis
- Anti GBM
- Ig A/HSP

ACUTE GLOMERULONEPHRITIS

- Unexplained renal failure
- Can be hypertensive
- Subnephrotic range proteinuria
- Active urine sediment with +ve blood, protein, WBC, dysmorphic RBC and RBC casts.
- Kidney biopsy for definitive diagnosis
ACUTE INTERSTITIAL NEPHRITIS

Etiology:
1. Medications – PPIs, Bactrim, Quinolones
2. Infections
3. Autoimmune

- Classic triad of fever, rash, and eosinophilia seen in < 10% of cases.
- Urine eosinophils neither sensitive nor specific.
- Sterile pyuria
- Definitive diagnosis by kidney biopsy

1. Generally reversible once the offending agent is stopped.
2. Treating underlying infection or autoimmune disease.

VASCULAR CAUSES

1. TTP/HUS
 - Thrombotic Thrombocytopenic Purpura
 - Hemolytic Uremic Syndrome
 - Malignant HTN: BP > 180/120 with end organ damage
 - Scleroderma: Autoimmune disease causing thickened skin and kidney problems
 - Preeclampsia: new onset HTN after 20 weeks, proteinuria can be present. Can cause AKI.

PYELONEPHRITIS

 - new urine/blood cultures with WBC casts in urine
 - Perinephric stranding on imaging
 - Treatment with fluids and ABX.
ESTABLISHING DIAGNOSIS

• Detective work:
 • History of inciting events – any nausea/vomiting/diarrhea/decreased oral intake, heavy exercise, fevers or rash, over the counter/herbal medication use, recent change in prescribed medications, recent hospitalizations, any contrast studies done in the recent past
 • Thorough chart review for in-hospital AKI
 • Is/Os (often times UOP is not documented accurately and hence cannot take it at face value unless catheter in place), trends in BP/HR and weights, intra-op notes if available, medication/contrast exposure
 • Physical exam in assessing volume status – JVD/crackles/edema/skin tenting but tough to assess volume status especially in cirrhotic patients whose total body volume is up but could be intravascularly dry.
 • Looking at the urine and urine sediment
 • Kidney biopsy for definitive diagnosis in Glomerulonephritis/Interstitial Nephritis/unexplained renal failure

PITFALLS OF CREATININE IN AKI

• AKI is not a steady state and hence cannot calculate estimated GFR using any of the available formulae
• Serum creatinine lags behind the actual injury
• Serum Creatinine levels depend on:
 - Clearance rate (changing in AKI)
 - Rate of production (changing in AKI)
 - Volume of distribution (changing in AKI)
• Creatinine produced predominantly by the muscles and hence, muscular people can have high serum creatinine and emaciated people with very low serum creatinine, not corresponding with the actual GFR.
• Drugs that block tubular secretion of creatinine can elevate serum creatinine without actual decrease in GFR – Ex: high dose bactrim, probenecid, high dose cimetidine

WHY WAS CREATININE THE CHOSEN ONE TO MEASURE RENAL FUNCTION?
WHY WAS CREATININE THE CHOSEN ONE TO MEASURE RENAL FUNCTION?

Up to 10% of urine creatinine results from tubular secretion

24 hour urine creatinine is an overestimate of true GFR

PLEASE DO NOT IGNORE THE UA

<table>
<thead>
<tr>
<th>Component Results</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Yellow</td>
</tr>
<tr>
<td>Clarity</td>
<td>Clear</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
</tr>
<tr>
<td>SPEC QUALITY</td>
<td>1 Nit</td>
</tr>
<tr>
<td>Protein</td>
<td>Trace</td>
</tr>
<tr>
<td>Blood</td>
<td>Neg</td>
</tr>
<tr>
<td>Glucose</td>
<td>Neg</td>
</tr>
<tr>
<td>Ketones</td>
<td>Neg</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>Neg</td>
</tr>
<tr>
<td>UROEPIDOSTEN</td>
<td>Neg</td>
</tr>
<tr>
<td>MBSI</td>
<td>Neg</td>
</tr>
<tr>
<td>LEUKocytes</td>
<td>Neg</td>
</tr>
<tr>
<td>RBC (MICROSкоп)</td>
<td>Microscopic (1+ form)</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>None</td>
</tr>
<tr>
<td>SQUAMOUS EPITHELIAL</td>
<td>None</td>
</tr>
</tbody>
</table>
DIFFERENTIATING PRE-RENAL VS. ATN

<table>
<thead>
<tr>
<th>LAB VALUE</th>
<th>PRE-RENAL</th>
<th>INTRINSIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine Specific Gravity</td>
<td>> 1.030</td>
<td>< 1.010</td>
</tr>
<tr>
<td>Urine Osmolality (mosm/kg)</td>
<td>> 560</td>
<td>< 150</td>
</tr>
<tr>
<td>Urine Na (mEq/L)</td>
<td>< 20</td>
<td>> 40</td>
</tr>
<tr>
<td>Fractional excretion of sodium, FeNa (%)</td>
<td>< 1</td>
<td>> 1</td>
</tr>
<tr>
<td>Fractional excretion of urea, FeUrea (%)</td>
<td>< 35</td>
<td>> 35</td>
</tr>
<tr>
<td>U/P Creatinine ratio</td>
<td>> 40</td>
<td>< 20</td>
</tr>
<tr>
<td>Serum BUN/Cr ratio</td>
<td>> 20:1</td>
<td>< 10:1</td>
</tr>
</tbody>
</table>

What do they reflect?
- Intact tubular function
- Impaired tubular function

SERUM BUN/CR RATIO

<table>
<thead>
<tr>
<th>High BUN</th>
<th>Low BUN or Creatinine</th>
<th>High Creatinine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prenal state</td>
<td>Low protein diet</td>
<td>High muscle mass</td>
</tr>
<tr>
<td>High dose steroids</td>
<td>Cachectic patients</td>
<td>Using creatine supplements</td>
</tr>
<tr>
<td>Hypercatabolic states — high fevers, burns</td>
<td>Cirrhosis — high bilirubin</td>
<td>Rhabdomyolysis</td>
</tr>
<tr>
<td>High protein diet — look for protein load in ICU patients on tube feeds</td>
<td>Interference with creatinine measurement</td>
<td>Diet rich in animal protein</td>
</tr>
<tr>
<td>Gl bleed</td>
<td>Drug blocking tubular secretion</td>
<td>Drugs blocking tubular secretion</td>
</tr>
<tr>
<td></td>
<td>Interference with creatinine measurement — nephrotoxic, ketosis</td>
<td></td>
</tr>
</tbody>
</table>

MANAGEMENT OF AKI

- Treatment of underlying etiology
 1. Volume repletion in volume depletion
 2. Treatment of heart failure
 3. Treatment of underlying infections
 4. Stopping offending medications
 5. Relieving obstruction.
- Track daily weights, BP and Inputs/outputs.
- Maintain mean arterial pressure (MAP > 60 mmHg).
- Dose medications to renal function — can be tricky.
- Avoid contrast studies and use least nephrotoxic medications when possible (should be the case in general).
- Management of electrolyte disturbances — hyperkalemia, metabolic acidosis, hyperphosphatemia.
HEMODIALYSIS IN AKI

• Exact timing – controversial and varying results in literature.
 - Early dialysis: exposing the patient to risks of dialysis when there is a
 chance for renal function to recover.
 - Too late: may affect overall morbidity/mortality
 - Dialysis is an invasive procedure: requires line placement and
 complications associated with line placement (many sick ICU patients
 have bleeding diathesis), increased risk of hypotensive episodes and
 arrhythmias during dialysis.

• General indications for dialysis: AEIOU still stand true to date.
 - Acidosis
 - metabolic acidosis refractory to medical management
 - Electrolytes
 - hyperkalemia refractory to treatment or rapidly rising levels in potassium
 - Intoxications with dialyzable drug, including
 - salicylates, lithium, isopropanol, methanol, and ethylene glycol (SLIME)
 - Overload
 - volume overload that does not respond to diuresis
 - especially with increased oxygen requirements
 - Uremia
 - elevated BUN with signs of uremia, such as uremic bleeding, encephalopathy,
 and pericarditis.

PROGNOSIS OF AKI

• Depends on severity of underlying illness.
• Most patients recover but "complete" recovery is not always the case
 even if serum creatinine reaches baseline.
• At risk for CKD with repeated AKI episodes.
• Mortality of > 50% in patients with AKI and multi-organ dysfunction.
• Often times, patients die with renal failure than from renal failure due
 to widely available renal replacement therapy options.
Questions?