Chronic Inflammation

- Prolonged tissue reaction characterized by:
 - Accumulation of lymphocytes and macrophages
 - Proliferating blood vessels
 - Formation of connective tissue
- Clinically, the process is of longer duration
 - Days, weeks or months

| Table 3-2: Features of Acute and Chronic Inflammation |
|-----------------|------------------|------------------|
| Feature | Acute | Chronic |
| Onset | Fast: minutes or hours | Slow: days |
| Cellular infiltrate | Mostly neutrophils | Macrophages/macrophages and lymphocytes |
| Tissue injury, involvement | Usually mild and self-limited | Often severe and progressive |
| Local and systemic signs | Prominent | Less |
Chronic Inflammation

- Predominated by macrophages, lymphocytes and plasma cells
- Significant collateral damage
- Repair processes occurring in parallel with persistent inflammation
Chronic Inflammation - Fundamentals

- Persistence of the stimulus of acute inflammation
- The lack of resolution may be secondary to:
 - Inability to get rid of the pathogen
 - Pathogen resistance to antimicrobials
 - Degradation resistant foreign body
 - Persistent exposure to an autoantigen
 - Genetic inability of the host to mount the appropriate response to the pathogen

‘Signature cell’ of chronic inflammation

- Activated macrophages
- M1 macrophages are associated with high levels of pro-inflammatory cytokines
- The innate immune system senses the persistent threat and increases innate protein and cell production to thwart it
- Chronic high levels of inflammatory cytokines cause:
 - Increased rates of hepatic production of defense proteins
 - Increased hepcidin production- the innate system wants to sequester Fe++ which is a growth factor for many microbes
 - Increased growth factors for platelets, monocytes and platelets
Granulomatous Inflammation

- Distinct form associated with persistent T-cell activation
- Common with persistent intracellular microbial infection
- Common with macrophage uptake of poorly degradable foreign bodies
- Found in several disease of unknown etiology
 - Sarcoidosis
 - Inflammatory bowel disease (IBD)

Unique morphology

- Central portion is necrotic debris
 - “caseous” or “necrotizing” granuloma, commonly in TB
- Activated macrophages and multinucleated giant cells in periphery
- Cuff of T-cells, the vast majority of which are CD3+/CD4+
- The entire granuloma is rimmed by proliferating fibroblasts
A typical granuloma resulting from infection with Mycobacterium tuberculosis showing a central area of caseous necrosis (C), activated epithelioid macrophages (M), giant cells (G), and a peripheral accumulation of lymphocytes (L).

Foreign body granuloma

The logic of the granuloma appears to walling off the infecting organism.
Is that logic sound?

- Yes and No
- The organism is indeed ‘walled off’, BUT
 - Collateral damage caused by progressive tissue necrosis and fibrosis can be extensive

Local and systemic effects and how the physician can exploit them for diagnosis and treatment...

- Pathophysiological effects of inflammation based on macrophage activation and release of pro-inflammatory cytokine and inflammation provoked growth factors
- Clinical differences are based solely upon intensity and duration of the stimulus
- The biochemical changes are "acute phase reactants" and reflect hepatic adjustments to inflammation

Biochemical Changes in Inflammation

- Increased hepatic production of:
 - Fibrinogen
 - Ceruloplasmin
 - Complement components (C3)
- Reciprocal decrease in albumin synthesis
 - Rough correlation between decrease and duration of inflammatory process
- Increased hepatic production of hepcidin
 - Anemia
- Growth factors stimulate marrow
 - Increase leucocyte production
 - Increase platelet production
 (leukocytosis and thrombocytosis can be present)
C- Reactive protein (CRP)

- CRP production is stimulated by inflammation and is tightly linked to IL-6 levels
- Can be measured rapidly, reliably and relatively low cost
- Can be used in semi-quantitative fashion for levels of inflammation
 - when normal can exclude significant inflammation being present
- Obesity is the one morbidity that can cause a "false" elevation of CRP

Erythrocyte Sedimentation Rate (ESR)

- Chronic inflammation causes clinically detectable antibody synthesis expressed as polyclonal increase in IgG
- IgG and fibrinogen coat erythrocytes and the red cells then fall more rapidly through a column of plasma
 - this rate is the ESR
- False elevations can occur when there is increased IgG present
 - for non-inflammatory reason - eg., myeloma, age

[Image]

[Image]

[Image]
Questions?
kamran.mirza@lumc.edu