Introduction to Renal Disease
MHD

Intro Objectives

• Define common terms used in discussion of renal disorders
• List characteristic signs and symptoms of renal dysfunction
• Define and describe common syndromes associated with renal disease
• List the renal syndromes used when evaluating a patient with a renal disorder

Review of Renal Basics

Major Anatomical Features of Urinary Tract

Kidney
• Glomeruli
• Tubules
• Interstitium
• Vasculature

Collecting system
• Calyces
• Ureters
• Bladder
• Urethra
Review of Renal Basics

Major Functions of the Kidney
• Glomerular filtration
• Excretion
 • Metabolic by-products, drugs, toxins
• Electrolyte and acid-base homeostasis
• Blood pressure regulation
• Volume homeostasis
• Endocrine regulation
 • Erythropoietin, vitamin D, renin

How do we know a patient has a “kidney problem”
• History
• Physical Exam
• Laboratory Evaluation
 – Serum electrolytes
 – Serum BUN, creatinine
 – Urinalysis
• Imaging
 – Ultrasound
 – CT scan
• Kidney Biopsy

Ways to categorize kidney dysfunction

<table>
<thead>
<tr>
<th>Site of lesion</th>
<th>Nature of factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomeruli</td>
<td>Immunologic</td>
</tr>
<tr>
<td>Tubules</td>
<td>Metabolic</td>
</tr>
<tr>
<td>Interstitium</td>
<td>Infiltrative</td>
</tr>
<tr>
<td>Vasculature</td>
<td>Infectious</td>
</tr>
</tbody>
</table>

| Chronicity | Hemodynamic |
| | Genetic |

Introduction to Laboratory Medicine
Common Laboratory Tests Module
Kidney Dysfunction - Chronicity

- **Acute**
 - Acute Kidney Injury (AKI)
 - Abrupt decrease in kidney function

- **Chronic**
 - Chronic Kidney Disease (CKD)
 - Evidence of kidney dysfunction/pathology >3 months

- **End Stage**
 - End Stage Renal Disease (ESRD)
 - Last stage of CKD
 - Need for chronic renal replacement therapy

Do not memorize

Approach to the Patient with Renal Disease
Features of Renal Dysfunction

- Too much or too little urine production
- Azotemia, uremia
- Proteinuria, hematuria, stone formation
- Abnormal urinary sediment
- Electrolyte and/or acid-base imbalance
- Hypertension, abnormal volume state
- Anemia, metabolic bone disease
- Fever, eosinophilia, rash, pain
- Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)

Too Much or Too Little Urine

- Normal Urine Output
 - 1500ml/24 hour
- Oligura
 - <500cc/24 hours
- Anuria
 - Absence of urine output
- Polyuria
 - >3000ml/24 hours
Features of Renal Dysfunction

- Too much or too little urine production
- **Azotemia, uremia**
- Proteinuria, hematuria, stone formation
- Abnormal urinary sediment
- Electrolyte and/or acid-base imbalance
- Hypertension, abnormal volume state
- Anemia, metabolic bone disease
- Fever, eosinophilia, rash, pain
- Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)

Azotemia and Uremia

- **Azotemia**: elevation in renal indices
 - BUN, technically
 - Usually reflects decrease in GFR

- **Uremia**: when azotemia gives rise to clinical manifestations and biochemical abnormalities
 - Clinical Syndrome
 - Fatigue, anorexia, nausea, mental status changes, itching
 - Serositis (pericarditis, pleural effusions)
 - Platelet dysfunction

Features of Renal Dysfunction

- Too much or too little urine production
- Azotemia, uremia
- **Proteinuria, hematuria, stone formation**
- Abnormal urinary sediment
- Electrolyte and/or acid-base imbalance
- Hypertension, abnormal volume state
- Anemia, metabolic bone disease
- Fever, eosinophilia, rash, pain
- Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)
Proteinuria

- Normal Urinary Protein
 - Total protein: < 150mg/24 hours
 - Albumin: < 30mg/24 hours

- Nephrotic Range Proteinuria
 - "Nephrosis": > 3 – 3.5gm/24 hours

- Quantitation of Proteinuria
 - 24hr urinary collection
 - Random urine protein/creatinine ratio

Hematuria

- Gross vs. Microscopic (≥ 2 RBC/hpf)
- Glomerular vs. Nonglomerular
- Upper vs. Lower Urinary Tract

- Imposters
 - Free Hemoglobin
 - Myoglobin
 - Menstrual contamination

Nephrolithiasis

- Formation of stones in the collecting system
- Manifests clinically as renal colic and hematuria
Features of Renal Dysfunction

- Too much or too little urine production
- Azotemia, uremia
- Proteinuria, hematuria, stone formation
- **Abnormal urinary sediment**
 - Electrolyte and/or acid-base imbalance
 - Hypertension, abnormal volume state
 - Anemia, metabolic bone disease
 - Fever, eosinophilia, rash, pain
 - Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)

Abnormal Urinary Sediment

- Hematuria
- Dysmorphic RBC’s
- Pyuria
- Casts
 - RBC casts
 - Glomerulonephritis
 - WBC casts
 - Pyelonephritis
 - Tubular casts

Types of Renal Tubular Casts

- Hyaline casts
 - Do not imply overt “pathology”
 - Dehydration, exercise, diuretic therapy
 - Precipitation of Horsfall mucoprotein
- Epithelial casts (muddy brown casts)
 - Acute tubular necrosis
- Fatty casts
 - Lipiduria, usually seen in nephrotic syndrome
- Granular casts
 - Chronic kidney disease
 - Nonspecific finding otherwise
- Waxy casts
 - Advanced kidney disease
Features of Renal Dysfunction

- Too much or too little urine production
- Azotemia, uremia
- Proteinuria, hematuria, stone formation
- Abnormal urinary sediment
- **Electrolyte and/or acid-base imbalance**
- Hypertension, abnormal volume state
- Anemia, metabolic bone disease
- Fever, eosinophilia, rash, pain
- Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)

Electrolyte/Acid-Base Imbalance

- Common imbalances in renal disease
 - Hyper/hyponatremia
 - Hyper/hypochloremia
 - Hyperkalemia
 - Hyperphosphatemia
 - Hypocalcemia
 - Anion gap metabolic acidosis
 - Non anion gap metabolic acidosis

Features of Renal Dysfunction

- Too much or too little urine production
- Azotemia, uremia
- Proteinuria, hematuria, stone formation
- Abnormal urinary sediment
- **Electrolyte and/or acid-base imbalance**
- Hypertension, abnormal volume state
- Anemia, metabolic bone disease
- Fever, eosinophilia, rash, pain
- Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)
Causes of Hypertension

• Primary or “Essential” hypertension

• Secondary causes
 – Anatomic/vascular causes
 – Endocrinopathies
 – Renal diseases, volume overloaded states
 – Pregnancy related diseases
 – Medications

Features of Renal Dysfunction

• Too much or too little urine production
• Azotemia, uremia
• Proteinuria, hematuria, stone formation
• Abnormal urinary sediment
• Electrolyte and/or acid-base imbalance
• Hypertension, abnormal volume state
• Anemia, metabolic bone disease
• Fever, eosinophilia, rash, pain
• Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)

Renal Hormone Regulation

• Erythropoietin: regulates HGB/HCT concentration
• Vitamin D: regulates calcium absorption, maintains normal levels of calcium and phosphorus
• Advanced kidney disease:
 • Chronic erythropoietin deficiency
 • Anemia of chronic disease, typically normocytic
 • Iron transport/storage dysregulation also contributes
 • Chronic hyperphosphatemia, decreased renal activation of vitamin D3 (1,25-OH form)
 • Hyperparathyroidism, renal osteodystrophy
Features of Renal Dysfunction

- Too much or too little urine production
- Azotemia, uremia
- Proteinuria, hematuria, stone formation
- Abnormal urinary sediment
- Electrolyte and/or acid-base imbalance
- Hypertension, abnormal volume state
- Anemia, metabolic bone disease
- Fever, eosinophilia, rash, pain
- Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)

Fever/pain/rash/eosinophilia

- Nonspecific symptoms/signs
- Seen in many forms of renal dysfunction
 - Urinary tract infection
 - Nephrolithiasis
 - Renal infarction
 - Papillary necrosis
 - Acute interstitial nephritis
 - Renal cell carcinoma
 - Vasculitis (SLE, Wegener’s, e.g.)
 - Cholesterol atheroembolic disease

Features of Renal Dysfunction

- Too much or too little urine production
- Azotemia, uremia
- Proteinuria, hematuria, stone formation
- Abnormal urinary sediment
- Electrolyte and/or acid-base imbalance
- Hypertension, abnormal volume state
- Anemia, metabolic bone disease
- Fever, eosinophilia, rash, pain
- Toxicity from decreased renal clearance of drugs, endogenous substances (e.g. insulin)
Drug Toxicity from Renal Dysfunction

- Often unanticipated by clinicians when managing AKI/CKD
- May be presenting feature of AKI/CKD
- Management
 - Drug dosage adjustment
 - Decrease dose or increase interval or both
- Can happen with endogenous substances as well
 - Insulin: prolonged renal clearance, resultant hypoglycemia

Additional Definitions as you Begin this Block

Approach to the Patient with Renal Disease

Scientific American Medicine 2018
Glomerular Disease

- Diseases of the glomerulus can present as one of five clinical syndromes:
 - Acute glomerulonephritis
 - Rapidly progressive glomerulonephritis
 - Chronic glomerulonephritis
 - Nephrotic syndrome
 - Asymptomatic urinary abnormalities

Glomerulonephritis

- A number of disorders lead to glomerular injury
- Present with some combination of
 - hematuria, proteinuria, reduced GFR, and hypertension.
What is “Nephritic Syndrome”?
- Diseases that cause active inflammation of the glomerulus associated with
 - Hematuria (red cells and red cell casts)
 - Azotemia
 - Hypertension
 - Oliguria
 - Sub-nephrotic range proteinuria

What is “Nephrotic Syndrome”?
- Diseases that cause massive leakage of protein across the glomerular basement membranes
 - Criteria
 - >3.5gm protein/24 hours
 - Hypoalbuminemia
 - Edema
 - Hyperlipidemia
 - Fat bodies in the urine/fatty casts

Approach to the Patient with Renal Disease

aka Acute Tubular Injury
-Damage to tubular epithelial cells
Approach to the Patient with Renal Disease

- Decreased effective arterial flow
- Urine flow is obstructed: ureters, bladder, urethra

Some Renal Equations
How to Measure/Estimate GFR

- Creatinine Clearance from 24-hour urine
 \[\text{GFR} = \frac{\text{U}_c \times \text{V}}{\text{P}_c} \]

- Cockcroft-Gault Formula
 \[\text{GFR} = \frac{(140 - \text{Age}) \times \text{Weight (in kg)}}{72 \times \text{Serum Creatinine (in mg/dL)}} \]

 * Modification of Diet in Renal Disease (MDRD) Equation
 \[\text{eGFR} = 186 \times \text{Serum Creatinine}^{-1.154} \times \text{Age}^{-0.203} \times [1.212 \text{ if male}] \times [0.742 \text{ if female}] \]

- Fractional Excretion of Sodium (FENa)
 \[\text{FENa} = \frac{\text{uria} \times \text{serum Na}}{\text{urine Na}} \times 100 \]

- Fractional Excretion of Urea (FUREA)
 \[\text{FUREA} = \frac{\text{uria} \times \text{serum urea}}{\text{urine urea}} \times 100 \]

- Can help determine cause of acute kidney injury
 - FENa < 1% or >2% helpful, 1-2% indeterminate
 - FUREA < 35% or >35% helpful

Fractional Excretion Sodium

- Prerenal azotemia
 - Reduction in the amount of glomerular filtrate entering each nephron increases the retention of salt and water, resulting in a lower fractional excretion of sodium (FENa)

- Acute Tubular Necrosis (ATN)
 - Nephrons excrete a large fraction of their filtered sodium and water, resulting in a higher FENa
Summary

• Summary of structure, work of kidneys
• Introduced ways to categorize kidney dysfunction
• Provided overview of features of renal dysfunction
• Introduced specific renal syndromes
 – Pre-renal, post-renal, intrinsic renal
• Defined nephritic, nephrotic syndrome
• Provided several formulas