Gram Negative and Gram Positive Anaerobes

- Objectives and Key Concepts
 - Know which anaerobic species cause which infections
 - Identify key virulence factors important in pathogenesis of anaerobic bacteria
 - Know which anaerobic pathogens cause infection as single agents vs those that are typically part of a mixed infection
 - Know key microbiological features of anaerobic bacteria
 - Know key signs and symptoms of infections caused by various Clostridia species
 - Know which antibiotics that have good/excellent activity against anaerobes

Medically Important Anaerobes

- Gram positive rods
 - Clostridium spp.
 - Eubacterium
 - Lactobacillus
 - Actinomyces
 - P. acnes
- Gram positive cocci
 - Peptostreptococci
- Gram negative rods
 - Bacteroides fragilis group
 - Prevotella spp
 - Porphyromonas spp
 - Fusobacterium spp

Gram Positive Anaerobes (spore forming)

- Clostridium perfringens (single or mixed)
- Clostridium tetani (single)
- Clostridium botulinum (single)
- Clostridium difficile (single)
Clostridium perfringens

- Gas gangrene – toxin
- Intraabdominal infections- vegetative and toxin
- Food poisoning- toxin

Clostridium perfringens

- Structure:
 - Gram positive
 - Non-motile
 - Encapsulated
 - Forms spores
 - Double zone hemolysis

“Box Car” appearance of Clostridium spp
Gas Gangrene

• Pathogenesis
 – Trauma with devitalized tissue/muscle
 – Spores of C. perfringens, C. novyi, C. septicum, C. ramosum germinate quickly
 – Extremities, endometrium, abdominal wall
• Typing A-E – based upon combination of toxins produced by organism

Gas gangrene

• C. perfringens: Type A most common cause of human disease in U.S.
• Effects of toxins
 – α toxin -lecithinase (phospholipase C), lysis of inflammatory cells, tissue destruction (muscle)
 – β-toxin- enteritis necroticans (pig bel)
 – i – necrosis and vascular permeability
 – ε toxin- Systemic, vascular permeability
 – Θ toxin -Cardiotoxic
Gas Gangrene

• Clinical Disease
 – Rapid onset (6 - 72 hr)
 – necrosis of muscle (myonecrosis), skin
 – tense edema
 – bullae formation
 – gas formation (fermentation)
 – Systemic
 • shock
 • hyper or hypothermia

Gas gangrene

• Diagnosis
 – Clinical
 • suspicion
 • Gram stain
 • culture

• Treatment
 – debridement, debridement, debridement
 – antibiotics (penicillin, B-lactam/inhibitor)
 • clindamycin
Clostridium perfringens

- Food poisoning
 - Heat resistant spores survive
 - gravy, soups
 - enterotoxin
 - produced following germination of large numbers of organisms
- Clinical
 - 8 - 24 hr after ingestion
 - nausea, abdominal pain, diarrhea

C. perfringens (food poisoning)

- Diagnosis
 - clinical
 - culture (not needed)

- Treatment
 - self limited disease
 - supportive

Clostridium tetani

- Entry and Spread
 - puncture wounds
 - burns
 - umbilicus
 - local germination without necrosis
- Tetanospasmin
 - neurotoxin (plasmid borne)
 - blocks postsynaptic inhibition spinal motor reflexes
 - (GABA)
 - Spasmodic contractions
Clostridium tetani

- **Clinical**
 - Generalized
 - *trismus* (lockjaw)
 - *risus sardonicus* (increased tone orbicularis oris)
 - opisthotonus (arm flexion, leg extension)
 - Respiratory (obstruction, diaphragm)
 - Toxin
 - intraaxonal, transports cephalid over 2 weeks

CLOSIDIUM TETANI GRAM STAIN

OPISTHOTONUS
OPISTHOTONUS

Tetanus

- Localized
 - rigidity of muscles at site of sporulation
 - usually precedes generalized

- Cephalic
 - cranial nerve musculature
 - facial, ocular

- Neonatal
 - failure of aseptic technique

Risu Sardonicus
Tetanus

- Diagnosis
 - Clinical

- Treatment
 - Human tetanus immunoglobulin
 - Sedation
 - Control of spasms
 - Supportive (airway)

Tetanus

- Prophylaxis
 - 3 doses DTaP
 - Revaccination every 10 years (Tdap/Td)

- Prevention
 - Passive immunization
 - HTIG for appropriate wound
 - No previous vaccination
 - > 5 years

Clostridium botulinum

- Ubiquitous organism (A-G serotypes, A, B, E, F associated with human disease)
 - Spores heat resistant (100°C x hours)
 - Home canning fruits/vegetables, fish
 - Rarely commercial sources

- Entry
 - Preformed toxin from contaminated food
 - Spores in honey (infants)
 - 12 - 36 hrs after ingestion
Clostridium botulinum

- Toxin (bacteriophage borne)
 - large single polypeptide (150-165 Da)
 - cleaved by bacterial protease
 - most potent toxin in nature
 - blocks acetylcholine
 - no transmitter release, paralysis
 - synapse permanently damaged
 - can travel axons
 - heat labile

Botulism

- Clinical
 - GI (nausea, dry mouth, diarrhea)
 - descending paralysis (flaccid)
 - cranial (III, IV, VI)
 - symmetric neurologic effects
 - afebrile
 - patient conscious
 - heart rate normal
 - no sensory deficits
 - Wound botulism

Diagnosis

- Clinical (DDx myasthenia gravis, Eaton Lambert, tick paralysis, Guillain-Barre
- toxin assays (serum, stool, food)

Prevention/Treatment

- avoid contaminated food
- heating of food (boiling)
- antitoxin (equine serum to A,B,E)
- supportive
Clostridium difficile

- Major hospital acquired pathogen
 - Rare normal flora
 - spores acquired in hospital
 - antibiotic therapy usually precedes disease
 - Toxin A - enterotoxin, inflammatory response, major toxin
 - Toxin B - cytotoxic

Diffuse Hemorrhagic colitis and pseudomembrane formation

PSEUDOMEMBRANOUS COLITIS
C. difficile

- Clinical
 - Pseudomembranous colitis
 - Diarrhea (watery, severe, bloody)
 - Abdominal pain
 - Leukocytosis
 - Fever
 - Toxic megacolon

- BI (Nap1) Strain
 - Increased Toxin A production
 - Higher mortality, especially elderly
 - Up to 50% of isolates

C. difficile

- Diagnosis
 - PCR - New standard - amplifies toxin region
 - 90+% sensitivity, 98% specificity
 - Detection of toxin A in stool
 - ELISA
 - 85 - 90% sensitivity (single assay)
 - 95% sensitive (two assays)
 - Culture
 - Not routinely recommended
 - Sigmoidoscopy/colonoscopy

C. difficile

- Treatment
 - Stop antibiotics if possible
 - Metronidazole - mild/moderate (oral preferred)
 - Vancomycin (oral only)
 - Fidaxomicin - primary and relapse
 - Colon resection
 - Lactobacillus
 - Fecal Transplant (FMT)
Clostridium septicum (single)
- Nontraumatic myonecrosis
- Bacteremia- likely result of break in integrity of bowel mucosa
 - High association with colon cancer, leukemia
 - Fulminant disease with high mortality
- Clostridium sordelli (single)
 - Abortion (11%), pregnancy (18%), IVDA (22%), other (40%)
 - Profound leukocytosis
 - 50-100% mortality

Other Anaerobic Gram positive Rods
- Actinomyces- non spore forming (single or mixed)
 - Filamentous hyphae
 - Sulfur granules (yellow sand colonies)
 - Non-acid fast
- Clinical
 - Slow growing, suppurative
 - Typically oral associated
 - Cervicofacial, thoracic, pelvic or intraabdominal
- Diagnosis
 - Culture, but slow growing
- Treatment
 - Penicillin best
 - Clindamycin or erythromycin

Propionobacterium acnes (single)
- Slow growing anaerobe
 - Contaminant in blood cultures
 - Cause of infection:
 - Prosthetic devices or hardware
 - Opportunistic infections
 - Acne
 - Treatment – if indicated
 - Penicillin as well as many other agents except metronidazole!!
Anaerobic Gram positive cocci

- Peptostreptococcus (single or mixed)
 - Normal flora of mouth, GI tract, pelvis
 - Contiguous infections (usually mixed)
 - Intra-abdominal, endometritis, pulmonary
 - Brain abscess

- Diagnosis – culture
- Treatment – debridement and penicillin, metronidazole, cabapenems, clindamycin

Gram Negative Anaerobes

- B. fragilis group (mixed)
 - Non-spore forming, non-motile
 - Requires enriched media to grow
 - Normal inhabitant of GI tract (colon)
 - Provide protection from invasion (?)

Bacteroides fragilis group

- B. fragilis
- B. thetaiotaomicron
- P. distasonis
- B. ovatus
- B. caccae
- B. uniformis
- B. vulgatus
- B. eggerthiae
- B. merdae
- B. stercoris
B. fragilis group Pathogenesis

- Hallmark is abscess formation
 - Almost always mixed infections (aerobes and anaerobes)

- Abscess:
 - Inflammatory response to infection
 - Encapsulated “pus”
 - PMN’s
 - Fibrin, fibrinogen
 - Debris, necrotic tissue

B. fragilis group

- Virulence factors
 - Polysaccharide capsule
 - Adherence to peritoneal cavity
 - Resists phagocytosis
 - Resistance to T cell and humoral immunity
 - Oxygen tolerance
 - Super oxide dismutase
 - Catalase
 - Toxins: Defective endotoxin – not associated with sepsis

B. fragilis group

- Most commonly recovered from clinical infections
 - Intraabdominal (3/2 ratio anaerobe/aerobe)
 - Female genital tract (3/1 ratio anaerobe/aerobe)
 - Aspiration pneumonia (mixed)
 - Empyema (mixed)
 - Otitis media ?
 - Brain abscess (mixed)
 - Skin and Soft Tissue infections (3/1 ratio)
Peritonitis

Pathogens from 900 Intraabdominal Infections

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Isolates</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>483</td>
<td>38</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>124</td>
<td>10</td>
</tr>
<tr>
<td>Proteus sp.</td>
<td>141</td>
<td>11</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>45</td>
<td>4</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>160</td>
<td>13</td>
</tr>
<tr>
<td>Other streptococci</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Other aerobes</td>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>1,029</td>
<td>100</td>
</tr>
</tbody>
</table>

Anaerobes

<table>
<thead>
<tr>
<th>Isolates</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteroides fragilis</td>
<td>329</td>
</tr>
<tr>
<td>Other Bacteroides species</td>
<td>318</td>
</tr>
<tr>
<td>Fusobacteria</td>
<td>65</td>
</tr>
<tr>
<td>Peptostreptococci</td>
<td>75</td>
</tr>
<tr>
<td>Clostridia</td>
<td>609</td>
</tr>
<tr>
<td>Prevotella</td>
<td>47</td>
</tr>
<tr>
<td>Other</td>
<td>133</td>
</tr>
<tr>
<td>Total</td>
<td>1,378</td>
</tr>
</tbody>
</table>
Fournier Gangrene

Liver Abscess

Liver Abscess: Microbiology

<table>
<thead>
<tr>
<th>BACTERIA</th>
<th>NUMBER OF LIVER ISOLATES</th>
<th>NUMBER OF BLOOD ISOLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobes</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>Peptostreptococci</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Microaerophilic streptococci</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Fusobacteria</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Bacteroides angilis</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Other Bacteroides sp.</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Aerobes</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Streptococci</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Proteus</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Organisms Isolated from Diabetic Foot Infections

Prevotella spp (mixed)

- Residents of mouth, GI tract, and Pelvis
 - Gram negative strict anaerobes
 - Require enriched media (blood containing)
 - Non-motile
 - Non-encapsulated
 - Virulence – unknown
 - Pathogenesis – abscess formation

Prevotella spp

- Female genital tract infections
 - *P. bivia, P. disiens*

- Oral, pleuropulmonary
 - *P. oris, P. buccae, P. oralis*

- Oral cavity, urogenital, GI tract
 - *P. melaninogenica, P. corporis, P. denticola, P. intermedia, P. loescheii, P. nigrescens*
Other Gram negative Anaerobes
of Clinical Importance

- *Porphyromonas* (mixed or single)
 - oral, periodontal infections

- *Fusobacterium* (mixed or single)
 - *F. nucleatum*
 - aspiration pneumonia, lung abscess, empyema, chronic otitis media, sinusitis, brain abscess
 - liver abscess
 - *F. necrophorum*
 - Lemierre’s syndrome post anginal sepsis
 - widespread metastatic infection
 - Highly virulent – potent endotoxin
Antibiotic Therapy for Anaerobes

Non- C. difficile

- **Bacteroides**
 - Most Active:
 - Metronidazole (100%),
 - Ampicillin/sulbactam (96%),
 - Piperacillin/tazobactam (99%),
 - Carbapenems (99.5%),
 - Chloramphenicol (100%)
 - Formerly Active: Cefoxitin (75-90%), clindamycin (60%), piperacillin (60%)

- **Fusobacterium**
 - Most Active: metronidazole, amp/sulb, pip/tazo, clindamycin, cefoxitin
 - Active: piperacillin (?), penicillin (>80%)

- **Peptostreptococcus**
 - Most Active: Penicillin, clindamycin, amp/sulb, pip/tazo, metronidazole (some resistant strains)