Language and Higher Cortical Function

MHD Clinical Correlation – Neuroscience Block

Gregory Gruener, MD, MBA, MHPE
Vice Dean for Education, SSOM
Professor, Department of Neurology
LUHS a member of Trinity Health
Commissural connections

Corpus callosum - Projects from cortical area to mirror image (+ other areas)
- Genu – frontal lobes
- Anterior body – frontal lobe
- Posterior body – parietal lobe
- Splenium – occipital and temporal lobe

Anterior commissure - Interconnects temporal lobe & components of olfactory system

Association bundles or fasciculi

- Corticocortical connections in the same hemisphere
- Not all begin or end at the same point
- Fibers travel in both directions, leaving and entering

Cerebral cortex - Generalities

- Types of cortex
 - Neocortex – most of cortex (6-layers)
 - Archicortex – hippocampus (3-layers)
 - Paleocortex – telencephalon base, olfactory (3-5 layers)

- Neocortex “factoids”
 - Cerebral cortex (GM + WM) ~ 82% brain mass
 - Human brain ~ 86 billion nerve cells (19% are in cerebral cortex)
 - 80% are pyramidal cells, 20% non-pyramidal

- “Relationship” between Brodmann’s number and function

- Areas differ in neocortical structure/connections
 - Function may be localized there, participates in or facilitates that function within other structures
“Types” of neocortical areas

Primary - “Direct link to the world”: Inputs from thalamic nuclei and outputs to brainstem and spinal cord. Contains precise, but distorted body map(s)

Unimodal - “More complex response functions”: Adjacent to primary cortical areas, same “function, but less precise” body map(s)

Multimodal - “High level intellectual functions”: Association areas send converging inputs; may respond to multiple stimuli or under particular circumstances

Neocortex Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
<th>Area</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortexal</td>
<td>Upper limit of thalamus</td>
<td>Other cortical</td>
<td>Outer band of Heschl’s gyrus</td>
</tr>
<tr>
<td>Cortexal</td>
<td>Lower limit of thalamus</td>
<td>Other cortical</td>
<td>Inner band of Heschl’s gyrus</td>
</tr>
</tbody>
</table>

Nolte J. The Human Brain, 6th ed., 2009
Neocortex hierarchical processing of information

Hypothalamus
Primary Sensory Cortex
Unimodal Sensory Cortex
Premotor Cortex
Paralimbic Cortex
Limbic Cortex
Thalamus
Primary Motor Cortex
Multimodal Cortex

EEG Characteristics of sleep

Sleep Roles
- Restoration and recovery
- Consolidation of memory and daily experiences
- Brain growth and development

Characteristics of non-REM and REM sleep

<table>
<thead>
<tr>
<th></th>
<th>Non-REM Sleep</th>
<th>REM Sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>Large amplitude, slow frequency, synchronized</td>
<td>Low amplitude, fast frequency, desynchronized</td>
</tr>
<tr>
<td>Muscle tone</td>
<td>Decreased</td>
<td>Almost abolished</td>
</tr>
<tr>
<td>Arousal level</td>
<td>Progressively higher</td>
<td>Highest</td>
</tr>
<tr>
<td>Mental activity</td>
<td>Vague dreams</td>
<td>Detailed, visual, emotional dreams</td>
</tr>
<tr>
<td>Autonomic activity</td>
<td>Increased parasympathetic Slow, regular pulse and respiration</td>
<td>Increased sympathetic Irregular pulse and respiration</td>
</tr>
</tbody>
</table>
“Regulation” of sleep-wake cycles

Approximately 10,000 neurons in the hypothalamus use retinal inputs to adjust to the day-night cycle. Neurons within the preoptic area and medullary reticular formation “turn-off” wakefulness. The flip-flop analogy represents the rapid and complete transitions between wake and sleep states.

Modularity of the cerebral cortex

Functional Connectome
Speech consists of phonation and articulation

- **Phonation**: sound production by moving vocal cords
 - Laryngeal muscles innervated by CN X
 - **Dysphonia**: hoarse, whispering, breathy

- **Articulation**: sound production by actions and varied positions of lips, tongue, palate, pharynx
 - Facial, oral muscles innervated by CN VII, IX, X, XII
 - **Dysarthria**: slurred, choppy, indistinct

Language – multimodal or symbolic communication

- Language centers in the dominant (usually left)
 - **Aphasia**: disorder of previously acquired language ability with impaired communication by means of any modality
 - **Prosody**: semantic and emotional meaning conveyed by changes in vocal pitch, inflection, melody or tone of speech (non-dominant hemisphere)
 - **Aprosodia**: poor prosodic comprehension when listening or lack of prosody when speaking

Characteristics of language

- **Fluency**: ease, facility and quantity of speech, regardless of content or meaning
- **Comprehension**
- **Repetition**: time-honored test phrase: “no ifs, ands or buts”
- **Paraphasias** (word or syllable substitutions)
 - Phonemic or literal: syllable (“sully” for “silly”)
 - Semantic or verbal: word (“blue” for “green”)
 - Neologism: nonsense word (“scatifang”)

Testing language

- Engaging in spontaneous conversation, Naming items, Repeating phrases, Answering questions, following spoken or written commands, Reading passages, Writing to dictation

Role: A distributed cortical network around the sylvian fissure

- Left hemisphere is dominant for language

Anatomical Network:

- Broca area (left frontal operculum and left inferior frontal gyrus)
- Wernicke area (posterior temporal gyrus, supramarginal gyrus and angular gyrus)
- Left middle temporal gyrus and anterior temporal cortex

Clinical deficits or syndromes:

- **Broca aphasia**
- **Wernicke aphasia**
- **Conduction aphasia**
Language “localization”

Geschwind, 1972

Language – Neocortical network

<table>
<thead>
<tr>
<th>Aphasic Syndrome</th>
<th>Lesion Site</th>
<th>Verbal Fluency</th>
<th>Verbal Repetition</th>
<th>Verbal Comprehension</th>
<th>Verbal Naming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broca (motor)</td>
<td>1</td>
<td>non-fluent</td>
<td>poor</td>
<td>good</td>
<td>poor</td>
</tr>
<tr>
<td>Wernicke (sensor)</td>
<td>2</td>
<td>fluent</td>
<td>poor</td>
<td>poor</td>
<td>poor</td>
</tr>
<tr>
<td>Conduction</td>
<td>3</td>
<td>fluent</td>
<td>poor</td>
<td>good</td>
<td>poor</td>
</tr>
<tr>
<td>Global</td>
<td>1, 2, 3</td>
<td>non-fluent</td>
<td>poor</td>
<td>poor</td>
<td>poor</td>
</tr>
<tr>
<td>Transcortical Motor</td>
<td>4</td>
<td>non-fluent</td>
<td>good</td>
<td>good</td>
<td>poor</td>
</tr>
<tr>
<td>Transcortical Sensory</td>
<td>5</td>
<td>fluent</td>
<td>good</td>
<td>good</td>
<td>poor</td>
</tr>
<tr>
<td>Anomic</td>
<td>6</td>
<td>fluent</td>
<td>good</td>
<td>good</td>
<td>poor</td>
</tr>
<tr>
<td>Mixed Transcortical</td>
<td>4, 5, 6</td>
<td>non-fluent</td>
<td>good</td>
<td>poor</td>
<td>poor</td>
</tr>
</tbody>
</table>

Language localization (this detail is not on the exam)
Perceptual - Motor – Neocortical network

- **Role:** Historical name for this difficulty – “Parietal Lobe Syndrome”
 - Visual perception of extrapersonal space, perceptual-motor coupling for motor control

- **Anatomical Network**
 - Temporo-parieto-occipital junction (integrates sensory information)
 - Premotor cortex (generates the motor programs that are appropriate to accomplish the motor task and forwarded to the primary motor cortex that encodes the motor acts)
 - Inferior frontal gyrus and frontal operculum (generates motor program to cranial nerve nuclei and pattern generators); speech production, lateralized to the left hemisphere

- **Clinical deficits or syndromes:**
 - **Apraxia** - inability to conceptualize and perform a skilled, learned act on command
 - **Limb apraxia**
Executive function – Neocortical network

Role: Historical name for this difficulty – “Frontal Lobe Syndrome”
- Executive functions (Decision making, inhibition of inappropriate behavior)
- Social behavior (recognition of emotions of others, insight and empathy).

Anatomical Network:
- Primarily made up of the prefrontal cortex that is an integral component of other networks (emotion and social, attention and memory).
- Dorsolateral prefrontal cortex - highly interconnected with other prefrontal areas, cortical association areas and paralimbic areas.
- Medial prefrontal and orbitofrontal - interconnected with the cingulate gyrus, anterior insula, hippocampus and amygdala.

Clinical deficits or syndromes:
- Lateral prefrontal syndrome (Dysexecutive syndrome)
- Ventromedial prefrontal syndrome (“acquired sociopathy”)
Emotion and Social – Neocortical network

- **Role:**
 - Acquisition of fear responses, emotional processing, social recognition and behavior

- **Anatomical Network:**
 - Amygdala serves as the hub, interacts with the orbitofrontal, medial frontal cortex and the anterior and mid portions of the cingulate gyrus

- **Clinical deficits or syndromes:**
 - Bilateral dysfunction - impaired recognition of facial expression and emotions
 - Contributes to cognitive/behavioral manifestations of neurodegenerative disorders
 - Mediates some emotional/autonomic manifestations of temporal lobe seizures
 - **Klüver-Bucy Syndrome** - Severe bilateral injuries of the amygdala results: difficulty in recognizing objects, excessive visual attentiveness, loss of normal fear/anger responses, marked indiscriminate hypersexuality, changes in eating behavior

Directed attention – Neocortical network

- **Role:**
 - Attention can be considered the ability to selectively enhance the detection of certain stimuli at the expense of others.

- **Anatomical Network:**
 - Brainstem neuromodulator system - generalized arousal.
 - Anterior insular cortex and anterior midcingulate cortex - maintain attention
 - Lateral parietal and frontal cortex
 - Dorsal network - bilateral and comprises goal-directed attention (top-down)
 - Ventral network - right hemisphere and is stimulus driven (bottom-up).

- **Clinical deficits or syndromes:**
 - **Neglect** – impairment of spatial relationships between the body and its surroundings
 - **Extinction** – an inability to detect simultaneous stimuli on both sides of the body
Diffuse neuromodulatory system

Function of the serotonergic and adrenergic systems:
- Sleep-arousal mechanisms
- Integrative behavioral and neuroendocrine functions
- Modulate actions of other neurotransmitters
- Brain growth and development
- Pain suppression

Diffuse neuromodulatory system

Directed attention – Neocortical network
Object and Face Recognition - Neocortical network

- **Role:**
 - Recognition of tactile, visual or auditory features of an object that allows perception of that object as a whole.
- **Anatomical Network:**
 - Multimodal cortex located within the temporal lobe where all these modalities are integrated (ventral visual stream)
- **Clinical deficits or syndromes:**
 - **Auditory agnosia** - usually a bilateral lesion of unimodal auditory cortex
 - **Prosopagnosia** - inability to identify faces - lesion of the fusiform gyrus.
 - **Tactile agnosia (astereognosis)** - usually a lesion in the primary sensory cortex
 - **Visual object agnosia** - usually a lesion of the fusiform gyrus
Learning-Memory – Neocortical network

- **Role:**
 - Learn, store and retrieve information about autobiographical (events, places and time) and semantic knowledge (factual knowledge that is learned; historical events, categories, features of things). The medial temporal lobe initiates the steps in learning facts and names and more permanent storage occurs in the lateral temporal lobe.

- **Anatomical Network:**
 - Medial temporal lobe [includes the hippocampal formation, entorhinal cortex (gateway for neocortical inputs into the hippocampal formation), perirhinal cortex and parahippocampal cortex].

- **Clinical deficits or syndromes:**
 - Amnesia – ability to learn and recall information (loss of autobiographical and semantic memory; usually in the setting of bilateral temporal cortex damage)