DEMENTIA: “Development of multiple cognitive deficits that include memory impairment and at least one of the following cognitive disturbances: aphasia, apraxia, agnosia or a disturbance in executive functioning. Cognitive impairment must be sufficiently severe to cause impairment in the occupational or social functioning and must represent a decline from a previously higher level of functioning.” – American Psychiatric Association’s Diagnostic and Statistical manual of mental disorders (DSM-IV)

Common pathologic findings in dementia:
- Loss of neurons (clinical features depend on particular population of neurons affected)
- Intracellular accumulation of abnormally configured proteins with formation of inclusion bodies (e.g. neurofibrillary tangles or Lewy bodies)
- Extracellular accumulation of abnormal proteins (in some neurodegenerative diseases), e.g. amyloid-beta in AD

Potentially treatable causes of dementia:
- Stroke
- Infections (CJD, syphilis, HIV)
- Neoplasms (primary or metastatic brain tumors)
- Drugs and toxins (barbiturates, alcohol, lead poisoning, other heavy metals, pesticides)
- Metabolic (hypothyroidism, liver failure, hypoglycemia)
- Vitamin deficiencies (thiamine, niacin, cobalamin)

NEURODEGENERATIVE DISORDERS PRIMARILY AFFECTING CEREBRAL CORTEX

Alzheimer’s disease
- Most common cause of dementia in elderly
- Most cases are sporadic, age is the major risk factor
- Minority of cases are familial (~10%) and have early onset of the disease
- Amyloid precursor protein (APP):
 *A transmembrane protein that plays a role in synaptic development
 *Gene on chromosome 21; patients with Down syndrome (trisomy 21) usually develop AD if live into 40’s-50’s
 *Normal metabolic pathway involves proteolytic cleavage by alpha-secretase into smaller fragments (implicated in neuroprotection) that are easily cleared from the CNS
 *Beta-secretase pathway leads to formation of amyloid-beta fragments that are deposited as amyloid plaques and result in AD
- Early-onset (autosomal dominant) AD: APP mutation (chr. 21), presenilin 1 and presenilin 2 mutations
- Apolipoprotein E allele €4 increases the risk of development of AD; ApoE allele €2 is protective
- Gross pathology:
 Diffuse cerebral atrophy (narrowing of gyri and widening of sulci); atrophy of the hippocampus; hydrocephalus ex vacuo (dilatation of ventricles secondary to loss of brain volume)
- Microscopic pathology:

 Neurofibrillary tangles: intracellular filamentous inclusions (seen in other conditions, not specific for AD) composed of hyperphosphorylated tau protein (microtubule associated protein)

 Amyloid plaques: deposits of amyloid-beta in neuropil (extracellular)

 Cerebral amyloid angiopathy (CAA): amyloid deposits in walls of small and medium size arteries in subarachnoid space and superficial cortex; frequently seen in Alzheimer’s disease but can be seen independently; important cause of non-traumatic parenchymal brain hemorrhage; highlighted by Congo red stain and immunohistochemistry with antibodies against amyloid-beta

Lewy body disease (or dementia with Lewy bodies)
- Second (after AD) most common neurodegenerative cause of dementia
- Clinical features: dementia, hallucinations and parkinsonian signs
- Lewy body inclusions composed of alpha-synuclein are present in substantia nigra and the cortex (diffuse Lewy body disease)

Frontotemporal lobar degeneration
- Group of neurodegenerative diseases characterized by predominant destruction of the frontal and temporal lobes (parietal and occipital lobe are spared)
- Third most common neurodegenerative cause of dementia (after AD and DLB)

Pick’s disease
- Frontotemporal lobar degeneration with Pick bodies (tauopathy)
- Presents with behavioral and language symptoms
- Tau-positive globose cytoplasmic neuronal inclusions in neurons of hippocampal dentate gyrus and hippocampal pyramidal neurons as well as pyramidal neurons of the frontal and temporal cortex

DISEASES OF THE BASAL GANGLIA

Idiopathic Parkinson’s disease
- Degeneration of dopaminergic neurons of the substantia nigra that project to the striatum
- Clinical symptoms: features of parkinsonisms (Tremor at rest, Rigidity, Akinesia (or bradykinesia), Postural instability); dementia may develop later in the course of the disease
- Gross findings: pallor of substantia nigra
- Microscopic findings: alpha-synuclein containing inclusions in cytoplasm of pigmented neurons of substantia nigra and locus coeruleus (Lewy bodies)

Huntington’s disease
- Clinical features: chorea, psychiatric symptoms progressing to dementia and cachexia
- Autosomal dominant due to abnormal expansion of CAG triplet repeats in huntingtin gene
- Number of repeats inversely correlates with the age of onset (>35 repeats is abnormal)
- Degeneration of GABA-containing neurons in the striatum with progressive atrophy of the caudate and putamen

DISEASES OF CEREBELLUM AND SPINAL CORD

Multiple system atrophy
- Sporadic and progressive disease
- Combinations of symptoms including: parkinsonism (due to striatonigral degeneration), cerebellar ataxia (due to olivopontocerebellar atrophy) and autonomic dysfunction
- Gross: atrophy and grey-green discoloration of putamen; substantia nigra, cerebellum, pons and olivary nucleus also atrophic
- Microscopic pathology: glial cytoplasmic inclusions containing alpha-synuclein in affected areas

Amyotrophic lateral sclerosis
- Degeneration of upper motor neuron (spasticity and hyperreflexia)
- And lower motor neuron (muscle weakness and atrophy)
- 5-10% familial with subset having mutations in the **superoxide dismutase gene (SOD1)** on chromosome 21 (most autosomal dominant but other patterns of inheritance also occur)
- Most cases are sporadic
- Some patients also have frontotemporal dementia
- Gross findings: spinal cord anterior nerve roots are atrophic (posterior sensory roots are normal)
- Loss of motor neuron in anterior horns of the spinal cord and motor cortex
- Characteristic inclusions in surviving motor neurons (TDP-43-positive)
- Loss of myelin in corticospinal tracts

Spinal muscular atrophy
- **Werdnig-Hoffmann disease (SMA I)**
 *Autosomal recessive
 *Affects fetus and newborn → “floppy baby”
 *Degeneration of lower motor neurons (anterior horn cells) → neurogenic atrophy of distal muscles
- **Kugelberg-Walander Disease (SMA II):**
 *Similar to Werdnig-Hoffmann disease but presents after 3 months of age or later
 *Course is progressive but slower
 *Compatible with normal life span
- **SMA III** (Rare):
 *Onset in infancy to early adolescence;
 *AR or sporadic
- All are caused by mutations in the survival of motor neuron (SMN) genes, SMN1 and SMN2 on chromosome 5
Friedreich’s ataxia
- Most common form of hereditary ataxia
- Autosomal recessive
- Trinucleotide repeat GAA (glutamic acid) in frataxin gene on chromosome 9
 - Frataxin is essential for mitochondrial iron regulation
- Degeneration of cerebellum → ataxia
- Degeneration of spinal cord tracts → loss of sense of vibration and proprioception, muscle weakness, loss of deep tendon reflexes
- + electrical conduction and structural anomalies of heart, hypertrophic cardiomyopathy → ~50% of deaths due to cardiac cause

VASCULAR DEMENTIA
- Second most common cause of dementia
- AD and cerebrovascular disease frequently co-exist = mixed dementia
- Subtypes:
 - Multi-infarct dementia: multiple strokes
 - Single stroke involving a strategic site (e.g. thalamus)
 - Subcortical small vessel disease (involving subcortical white matter)
- Causes: hypertension, atherosclerosis, vasculitis, CAA

TOXIC AND METABOLIC DISORDERS

Ethanol toxicity
- Wernicke’s syndrome (thiamine, B1, deficiency) – hemorrhage and subsequent atrophy of mammillary bodies and cerebellar vermis
- Central pontine myelinolysis – due to rapid correction of electrolyte imbalances, especially chronic hyponatremia; triangular demyelinating lesion in the midline of basis pontis
- Cortical atrophy

Methanol toxicity
- Necrosis and cavitation of the putamen

Carbon monoxide poisoning
- Hemorrhagic necrosis of globus pallidus

Subacute combined degeneration
- Vitamin B12 deficiency
- Causes: pernicious anemia, chronic gastritis, surgical resection, tumors, strict vegetarianism/veganism
- Symptoms: megaloblastic anemia, neurologic symptoms (mechanism unknown): weakness, paresthesias of hands and feet → loss of sense of vibration → ataxia
- Myelin loss in posterior and lateral columns of the spinal cord
Hepatic encephalopathy
- In acute or chronic liver disease
- Acute: brain edema
- Chronic: Alzheimer’s type II astrocytes secondary to elevated ammonia level