CENTRAL NERVOUS SYSTEM INFECTIONS

1. OBJECTIVES
 • Explain the difference between meningitis and encephalitis.
 • Describe routes of parenchymal and meningeal infections.
 • List most common organisms that cause bacterial meningitis in different age groups.
 • Analyze CSF findings in viral, bacterial, and fungal infections.
 • Summarize histologic findings in:
 – Bacterial meningitis and CNS abscess
 – Chronic meningitis (TB)
 – Viral meningoencephalitis
 – Fungal infections
 – Parasitic infections

2. MENINGITIS - Inflammation of the leptomeninges
 a. Bacterial
 - S. pneumoniae, N. meningitidis and H. influenzae cause approx. 80% of cases of bacterial meningitis worldwide
 - Etiological agents associated with bacterial meningitis are age-related
 - Lumbar puncture is the most important investigation in patients with suspected bacterial meningitis. CT or MRI imaging should be done before lumbar puncture to predict the likelihood of brain herniation.
 - CSF is cloudy with numerous neutrophils and low glucose; Gram stain can identify the bacteria.
 - Microscopic: meninges expanded by acute inflammatory infiltrate (purulent meningitis), if brain parenchyma involved = meningoencephalitis
 b. Mycobacterial (Tuberculous)
 - Chronic
 - Thick exudate at the base of brain, entraps cranial nerves and major vessels
 - Can present with cranial nerve involvement or CSF blockade
 - Histopathology:
 Granulomatous inflammation - collections of epithelioid histiocytes, multinucleated giant cells and central caseating necrosis
 Findings are patchy
 - CSF: ↑lymphocytes, moderately high protein, mildly low glucose
 c. Neurosyphilis
 - Meningovascular syphilis:
 - Months or years after primary infection
 - Thickened leptomeninges – hydrocephalus and cranial nerve palsies
 - Obliterative endarteritis causes thrombosis and infarction
- Parenchymal syphilis
 - General paresis – 5-25 after infection; presents with psychosis and dementia; large number of Spirochetes in the brain
 - Tabes dorsalis – atrophy of posterior spinal roots and columns; spirochetes cannot be demonstrated; presents with pupillary abnormalities, optic nerve atrophy, ataxia, and bladder and bowel dysfunction

d. Fungal
 - Chronic
 - Spread from primary pulmonary infection is the most common scenario.
 - Histopathology: mononuclear infiltrate, variably granulomatous (overlaps with Tuberculous meningitis)
 - Special stains: GMS, PAS, Mucicarmine
 - Examples:

 Cryptococcus - Budding yeasts with clear mucoid capsule. The capsule stains with India ink and mucicarmine.
 Aspergillus - Hyphae branching at 45 degree angles
 Candida – Pseudohyphae
 Zygomycetes (Mucor) - Direct spread from sinuses

 - **Angioinvasive fungi:**
 - Candida
 - Aspergillus
 - Zygomycetes

- **Mycotic aneurysm:** Term initially used to describe aneurysms associated with bacterial endocarditis (noted to have the appearance of “fresh fungus vegetations”)
 - May be caused by bacteria as well as fungi
 - Septic embolus from the heart can occlude the vasa vasorum of the vessel or the vessel lumen, leading to vascular wall infection and mycotic (pseudo-) aneurysm formation

e. Protozoal
 - Toxoplasmosis
 - Brain abscess (ring-enhancing lesion on MRI)
 - Humans become intermediate hosts through ingestion of oocysts (cat feces, soil)
 - Crosses placenta (pregnant women should avoid changing cat litter)
 - Congenital toxoplasmosis is part of TORCH infections
 - **TORCH** infections
 - Toxoplasmosis, Others, Rubella, CMV, Herpes virus
 - Similar symptoms at birth
 - Classic triad of chorioretinitis, hydrocephalus, and intracranial calcifications
- Maternal infections from these agents are usually asymptomatic!
- Necessity to test for multiple pathogens
 - Diagnosis: serology, PCR, biopsy

- **Naegleria fowleri**
 - Present globally in soil and fresh water; exposure is therefore probably very common but infection is uncommon
 - Invades nasal mucosa and enters brain along olfactory nerves.
 - Rapidly progressive course, usually fatal: hemorrhagic necrosis of grey and white matter
 - Trophozoites are small, about 10 um in tissue. Vacuolated cytoplasm and pale nucleus with prominent nucleolus
 - CSF shows purulent inflammation
 - Diagnosis: wet mount or PCR, but difficult to make in life
 - Other free-living amoebae: Acanthamoeba and Balamuthia cause granulomatous encephalitis and have less fulminant course although still with high mortality

f. Parasitic
- **Cysticercus**
 - Most common cerebral parasite; presents with seizures
 - Acquired by consuming food contaminated by eggs of pork tapeworm, *Taenia solium*
 - Egg hutches in the gut into oncosphere
 - Oncosphere migrates to other organs and develops into cysticercus (a bladder containing fluid and protoscolex), which lives for a few years before dying
 - Muscle, eyes and CNS are most commonly infected
 - Clinical symptoms of the CNS infection usually caused by the death of the parasite.
 - Cysts eventually resolve into calcified nodules.

g. Viral
- Aseptic meningitis
- Most common organisms: Enterovirus, Arbovirus, HSV2, West Nile Virus
- Gross and histopathologic abnormalities are scant
- Histopathology: Lymphocytic meningeal infiltrates with perivascular lymphocytic extension along Virchow-Robin spaces
- If + microglial nodules = meningoencephalitis
h. **Non-infectious**
 - Neoplastic meningitis = leptomeningeal carcinomatosis:
 - Tumor cells diffusely infiltrating subarachnoid space causing clinical symptoms and imaging signs that mimic subacute to chronic infectious meningitis
 - Diagnosis made by CSF cytology

3. **ENCEPHALITIS**
 a. Infection of brain parenchyma - neurons and glial cells
 b. Usually accompanied by meningitis (meningitis can occur alone)
 c. Diffuse or focal
 d. **Cytomegalovirus (CMV)**
 - Fetal infection is part of TORCH spectrum
 - Common opportunistic infection in AIDS and other immunocompromised states
 - Histologic findings: obvious meningoencephalitis, cytomegalic inclusions in all cellular elements of the brain, including neurons. Most numerous in the periventricular regions.
 - Postnatal infection: numerous microglial nodules, only occasional cytomegalic cells with inclusions.
 e. **HSV** encephalitis
 - Usually HSV-1
 - Transmitted via saliva with latent infection in trigeminal ganglion
 - Causes medial temporal encephalitis – necrotizing hemorrhagic encephalitis of temporal lobes
 - Microscopic: intranuclear cherry-red inclusions in neurons (“owl’s eye” inclusion)
 f. **Polio** encephalitis
 - Spinal grey matter involvement with destruction of anterior horn cells (lower motor neuron)
 - Mixed inflammatory infiltrate and neuronophagia
 g. **Rabies** encephalitis
 - Rhabdos = rod
 - Bats are the main source in the US
 - Variable incubation time (10 days to >1 year, most commonly 1-3 months)
 - Prodrome of flu-like symptoms and pain at the site of the bite
 - Eosinophilic cytoplasmic inclusions (Negri bodies), easiest to find in neurons of brainstem, hippocampus and Purkinje cells
 h. **Progressive Multifocal Leukoencephalopathy (PML)**
 - JC virus
- Most otherwise healthy adults have serological evidence of polyomavirus infection but PML is largely restricted to immunocompromised hosts
- Productive infection in oligodendrocytes → cell lysis → demyelination
- Histologic findings:
 - loss of myelin
 - foamy macrophages
 - bizarre astrocytes resembling malignant astrocytes
 - oligodendroglial viral inclusions ("ground glass" oligodendrocytes)

i. HIV
- HIV encephalitis (HIVE)
 - widespread microglial nodules with multinucleated giant cells
- HIV leukoencephalopathy
 - subacute onset cognitive impairment
 - diffuse white matter pallor with microglial nodules and multinucleated giant cells
- Vacuolar myelopathy
 - spastic paraparesis with hyperreflexia and ataxia
 - vacuolation of posterior and lateral spinal columns (resembles subacute combined degeneration)

4. BRAIN ABSCESS
- Space-occupying lesion most commonly due to hematogenous spread of infection from the heart (endocarditis, congenital heart defect with shunt) or lung (bronchiectasis)
- Multiple pathogens are common
- Lumbar puncture not helpful unless there is concurrent meningitis
- Neuroimaging is a sensitive diagnostic tool but a definitive diagnosis can be made on biopsy
- Differential diagnosis of a "ring-enhancing" lesion on MRI: abscess, glioblastoma, metastasis