Pharmacology/Therapeutics II Block I Handouts 2014-15

54. H2 Blockers, PPLs – Patel

55. Palliation of Constipation and Nausea/Vomiting – Kristopaitis

56. Principles of Clinical Toxicology – Kennedy

57. Anti-Parasitic Agents - Johnson
KEY CONCEPTS AND LEARNING OBJECTIVES

Histamine via its different receptors produces a number of physiological and pathological actions. Therefore, anti-histaminergic drugs may be used to treat different conditions.

1. To know the physiological functions of histamine.
2. To understand which histamine receptors mediate the different effects of histamine in stomach ulcers.
3. To know what stimuli cause the release of histamine and acid in stomach.
4. To know the types of histamine H$_2$ receptor antagonists that are available clinically.
5. To know the clinical uses of H$_2$ receptor antagonists.
6. To know the drug interactions associated with the use of H$_2$ receptor antagonists.
7. To understand the mechanism of action of PPIs
8. To know the adverse effects and drugs interactions with PPIs
9. To know the role of H. pylori in gastric ulceration
10. To know the drugs used to treat H. pylori infection

Drug List: See Summary Table Provided at end of handout.
Histamine H2 receptor antagonists and PPIs in the treatment of GI Ulcers:

The following section covers medicines used to treat ulcer. These medicines include H2 receptor antagonists, proton pump inhibitors, mucosal protective agents and antibiotics (for treatment of H. Pylori).

A. H2 Receptor Antagonists

These drugs reduce gastric acid secretion, and are used to treat peptic ulcer disease and gastric acid hypersecretion. These are remarkably safe drugs, and are now available over the counter.

The H2 antagonists are available OTC:
1. Cimetidine (Tagamet®)
2. Famotidine (Pepcid®)
3. Nizatidine (Axid®)
4. Ranitidine (Zantac®)

All of these have different structures and, therefore, different side-effects.

The H2 antagonists are rapidly and well absorbed after oral administration (bioavailability 50-90%). Peak plasma concentrations are reached in 1-2 hours, and the drugs have a \(t_{1/2} \) of 1-3 hours.

H2 antagonists also inhibit stimulated (due to feeding, gastrin, hypoglycemia, vagal) acid secretion and are useful in controlling nocturnal acidity – useful when added to proton pump therapy to control “nocturnal acid breakthrough”.

Page 2
The H₂ receptor antagonists are mostly excreted unchanged by the kidney (renal function!).

However, the H₂ blockers undergo hepatic biotransformation, with cimetidine exhibiting the greatest hepatic metabolism. Because of the hepatic metabolism and renal excretion, H₂ receptor antagonists should be used with care (lower doses) in patients with hepatic and renal impairment. One last point is that a small number of men taking cimetidine (0.2%) develop gynecomastia due to decreased estrogen metabolism (Cyt P450 competition/inhibition) - In women galactorrhea.

B. Proton Pump Inhibitors

Proton Pump Inhibitors (PPI) irreversibly inhibit the gastric parietal cell proton pump H⁺/K⁺ ATPase.

Prodrugs – activated in acid environment – enter the parietal cells from the blood

The prolonged duration of anti-secretory action of PPI reflects irreversible inactivation by covalent modification, of the parietal cell H⁺,K⁺-ATPase, rather than a prolonged serum half-life.

A single daily dose can effectively inhibit 95% of gastric acid secretion.

Because the PPI are so effective, they are the drug of choice for treating Zollinger-Ellison syndrome, which is a gastric acid secreting tumor and in Gastric esophageal reflux disease (GERD) when this is not responsive to H₂ antagonists.

Ordinarily, H₂ antagonists should not be given simultaneously with PPI, because the antagonists reduce the efficacy of the PPI, and produce a less favorable outcome – but useful for nocturnal acidity control – see above.

The current proton pump inhibitors that are available are:

1. Omeprazole (Prilosec®)
2. Lansoprazole (Prevacid®)
3. Rabeprazole (Aciphex®)
4. Pantoprazole (Protonix®)
5. Esomeprazole (Nexium®)

Important Drug Interactions of PPIs:

PPIs are metabolized by Cyt P450 and, therefore, can decrease the metabolism and clearance of benzodiazepines (Diazepam), warfarin, phenytoin, etc.

PPIs reduce absorption of ketoconazole but increase absorption of digoxin.

New (12/10/13): Long term use of PPIs may cause Vit B12 deficiency – acidic
environment required for B12 absorption!

Adverse Reactions of PPIs:

Few (<3% of patients) and generally mild

Include diarrhea, headache, drowsiness, muscle pain, and constipation.

C. Mucosal Protective Agents

Sucralfate (Carafate ®) is aluminum sucrose sulfate.

It is thought to polymerize and bind selectively to necrotic tissue, thereby creating a barrier between the gastric contents and the gastric mucosa.

Sucralfate is very effective for treating duodenal ulcers, and also suppresses H. Pylori (see below). For your information (but not required for memorization), Sucralfate is given 1g per dose QID on an empty stomach (1 hr before meals).

It is important to note that citric acid, such as that present in grapefruits, promotes absorption of the aluminum in sucralfate. This poses a problem for patients with renal failure who have an impaired ability to eliminate the aluminum.

Do not give with cimetidine/ranitidine but can be given 2h prior.

Colloidal Bismuth (Pepto-Bismol) also acts like sucralfate to bind necrotic tissue and creates a barrier.

D. Helicobacter Pylori

H. Pylori is present in only 0.3-0.5 % of the normal healthy population. H. Pylori is present in drinking water, although the mode of transmission has not been definitively proven. The presence of H. Pylori dramatically increases the risk that a patient will have a recurrent ulcer. Recurrence rates during the follow-up period range from 60% to 85% for patients with persisting *H. pylori* infection; in contrast, in most studies only 5% to 10% of patients without *H. pylori* show recurrence. Patients who had *H. Pylori* but were cured, have only a 5 – 10% rate of recurrence.

H. Pylori is treated by a combination therapy consisting of a PPI plus two of three antibiotics (clarithromycin, metronidazole, or amoxicillin). A 1 week treatment with this regimen produces a 90% cure rate for H. Pylori. If a PPI is used with a single antibiotic (typically clarithromycin), the patient must be treated for two weeks, and the cure rate is 10-20% lower.
<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name</th>
<th>Mechanism</th>
<th>T½ hrs</th>
<th>Elimination</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimetidine</td>
<td>Tagamet</td>
<td>H2 antagonist</td>
<td>1-3</td>
<td>Hepato-renal</td>
<td>Safe/OTC</td>
</tr>
<tr>
<td>Famotidine</td>
<td>Pepcid</td>
<td>H2 antagonist</td>
<td>1-3</td>
<td>Mainly Renal</td>
<td>Safe/OTC</td>
</tr>
<tr>
<td>Nizatidine</td>
<td>Avid</td>
<td>H2 antagonist</td>
<td>1-3</td>
<td>Mainly Renal</td>
<td>Safe/OTC</td>
</tr>
<tr>
<td>Ranitidine</td>
<td>Zantac</td>
<td>H2 antagonist</td>
<td>1-3</td>
<td>Mainly Renal</td>
<td>Safe/OTC</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>Prilosec</td>
<td>Proton Pump Inhibitor</td>
<td>24</td>
<td>hepatic</td>
<td>+Effective</td>
</tr>
<tr>
<td>Lansoprazole</td>
<td>Prevacid</td>
<td>Proton Pump Inhibitor</td>
<td>24</td>
<td>hepatic</td>
<td>+Effective</td>
</tr>
<tr>
<td>Rabeprazole</td>
<td>Aciphex</td>
<td>Proton Pump Inhibitor</td>
<td>24</td>
<td>hepatic</td>
<td>+Effective</td>
</tr>
<tr>
<td>Carafate</td>
<td>Sulcralfate</td>
<td>Mucosal Protective Agent</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OTC = over the counter medication
BBB = reduced transfer across the blood brain barrier
+Effective = more effective than the H2 antagonists (which are already quite effective!!).
<table>
<thead>
<tr>
<th>Drug</th>
<th>Classification</th>
<th>Biochemical mechanism of anti-asthmatic action</th>
<th>Routes of administration</th>
<th>Type of therapeutic use</th>
<th>Contraindications</th>
<th>Major side effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimetidine (Tagamet®)</td>
<td>Histamine H2 receptor antagonist</td>
<td>Blocks histamine H2 receptors and decreases gastric acid secretion</td>
<td>1. Oral
 2. i.v.
 3. injection</td>
<td>1. duodenal ulcers
 2. gastric ulcers
 3. erosive gastroesophageal reflux disease (GERD)
 4. Prevention of upper GI bleeding
 5. hypersecretory conditions (Zollinger-Ellison Syndrome)</td>
<td>Gynecomastia with long-term use and in some incidences impotence</td>
<td>1. i.v. bolus reported to cause cardiac arrhythmias and hypotension (although rare). 2. H2 antagonists can be added to PPIs to stop nocturnal acid breakthrough - BUT may decrease efficacy of PPIs</td>
<td></td>
</tr>
<tr>
<td>Ranitidine (Zantac®)</td>
<td>Histamine H2 receptor antagonist</td>
<td>Blocks histamine H2 receptors and decreases gastric acid secretion</td>
<td>1. Oral
 2. i.v.</td>
<td>Same as Cimetidine</td>
<td>Rare but include agitation, anemia, confusion and depression</td>
<td>1. May increase risk of developing pneumonia 2. H2 antagonists can be added to PPIs to stop nocturnal acid breakthrough. – BUT may decrease efficacy of PPIs</td>
<td></td>
</tr>
<tr>
<td>Omeprazole</td>
<td>PPI</td>
<td>1. Inhibits H⁺/K⁺ pump (proton pump) in the gastric parietal cells</td>
<td>1. Oral</td>
<td>1. Zollinger-Ellison Syndrome
 2. GERD
 3. short term treatment of duodenal ulcers.
 4. Rx of H. Pylori in combination with Antibiotics</td>
<td>1. Can increase concentrations of diazepam, warfarin, and phenytoin by decreasing their clearance by the liver.
 2. PPIs can reduce absorption of ketoconazole and increase absorption of digoxin.</td>
<td>Diarrhea, nausea, skin rash, dizziness</td>
<td>Not normally used with H2 antagonists – reduced efficacy of PPIs. NEW: long term use may cause Vit B12 deficiency</td>
</tr>
<tr>
<td>Rabeprazole</td>
<td>PPI</td>
<td>1. Inhibits H⁺/K⁺ pump (proton pump) in the gastric parietal cells</td>
<td>1. Oral</td>
<td>Same as Omeprazole</td>
<td>Same as for Omeprazole</td>
<td>Headache</td>
<td>Not normally used with H2 antagonists – reduced efficacy of PPIs. NEW: long term use may cause Vit B12 deficiency</td>
</tr>
</tbody>
</table>
Pharmacologic Palliation of Constipation & Nausea/Vomiting

Date: January 15, 2015—9:30 AM

Reading Assignment: Katzung, Basic and Clinical Pharmacology, 12th Ed
Chapter 62. Drugs used in the treatment of gastrointestinal diseases
 Drugs used to stimulate gastrointestinal motility
 Laxatives
 Antiemetics

LEARNING OBJECTIVES

1. Explain the mechanisms of action, indications, and contraindications of the following classes of drugs used for the relief of constipation and prototype drugs in each class:
 Bulk laxatives (Psyllium; Bran)
 Osmotic laxatives
 Nonabsorbable sugars (Lactulose; Sorbitol)
 Saline and magnesium laxatives (Magnesium citrate, magnesium hydroxide, sodium phosphate)
 Polyethylene glycol
 Stimulant laxatives (Senna; Bisacodyl)
 Detergent laxatives (Docusate)
 Lubricants (Glycerin suppository, mineral oil enema)
 Enemas (Warm water; Soap suds; sodium phosphate)

2. Explain the mechanisms of action, indications, and contraindications of the following antiemetics and know prototype drugs in each class:
 Dopamine receptor antagonists
 Benzamides (Metoclopramide)
 Phenothiazines (Prochlorperazine)
 Butyrophenones (Haloperidol)
 Prokinetic agents (Metoclopramide)
 Antihistamines (Promethazine, Diphenhydramine)
 Serotonin antagonists (Ondansetron; Granisetron)
 Anticholinergics (Scopolamine)
 Benzodiazepenes (Lorazepam)
 Corticosteroids (Dexamethasone)
Pharmacologic Palliation of Constipation & Nausea/Vomiting

I. A goal of palliative care is to relieve the suffering of patients. Control of pain and other physical symptoms, as well as psychological, social and spiritual problems is paramount.

II. Pharmacologic Palliation of Constipation

A. BULKING AGENTS

Agents
- Dietary fiber (bran)
- Psyllium (Metamucil)

Mechanisms of Action
- Bulk-forming laxatives cause retention of fluid and an increase in fecal mass, resulting in stimulation of peristalsis.
- They usually have an effect within 12 to 24 hours and reach a maximum after several days

Side Effects
- Flatulence

Contraindications
- In debilitated patients who cannot drink adequate fluid (1.5 – 2 liters/day) could result in fecal impaction, intestinal obstruction

B. OSMOTIC LAXATIVES

These are soluble but nonabsorbable compounds that result in increased stool liquidity due to an obligate increase in fecal fluid.

- Nonabsorbable sugars

Agents
- Lactulose
- Sorbitol

Mechanism of Action
Lactulose is a synthetic disaccharide. Bacteria in the colon degrade lactulose into lactic acid, acetic acid and formic acid resulting in an increase in osmotic pressure and acidification of intestinal contents which in turn, softens the stool by promoting stool water content

Side Effects
- Bloating, cramps, flatulence
- Very sweet – may be difficult for patients to tolerate
○ Can worsen dehydration by drawing body water into the bowel lumen

Saline and magnesium salt laxatives

Agents
- Magnesium citrate
- Magnesium hydroxide (Milk of Magnesia)
- Sodium Phosphate (Fleets Phospho-Soda)

Mechanism of Action
- Saline laxatives have an osmotic effect causing increased intraluminal volume that acts as a stimulus for intestinal motility.
- Laxatives that contain magnesium have been shown to release cholecystokinin that causes intraluminal accumulation of fluid and electrolytes and promotes small bowel and possibly even colonic transit.
- Rapid movement of water into distal small bowel and colon leads to high volume of liquid stool.
- High doses produce bowel evacuation in 1-3 hours.

Side Effects/Contraindications
- Contraindicated in any form of bowel obstruction
- Can produce dehydration without adequate fluid replacement
- Because the ions can be partially absorbed, laxatives containing magnesium and phosphorous are contraindicated in patients with impaired renal function
- Avoid sodium phosphate-containing formulations in patients with congestive heart failure, liver failure – severe electrolyte abnormalities can occur.
- Rare reports of ischemic colitis with magnesium citrate and sodium phosphate thought secondary to a rapid fluid shift from the intravascular compartment to the gut lumen resulting in transient colonic hypoperfusion and ischemia

Clinical Indications
- Magnesium citrate and sodium phosphate indicated for bowel cleansing in preparing patients for surgery or the colon for x-ray or endoscopy
- Magnesium hydroxide is indicated for relief of constipation

Polyethylene Glycol

Trade names
- Constipation - Miralax, GlycoLax
- Bowel Cleanser - Colyte, Golytely

Mechanism of Action:
- Polyethylene glycol is an osmotic agent that causes retention of water in the stool resulting in a softer stool and more frequent bowel movements.
○ It appears to have no effect on active absorption or secretion of glucose or electrolytes
○ No significant intravascular fluid or electrolyte shifts occur

Side Effects
Minimal

Clinical Indications
○ Large volume (i.e., 4 liters) ingested rapidly causes rapid evacuation for bowel cleansing before endoscopy
○ Smaller daily doses can be used for constipation.

C. STIMULANT LAXATIVES
Agents:
○ Senna
○ Bisacodyl (Dulcolax)

Mechanism of Action:
○ Bisacodyl is a contact laxative that acts on the large intestine to produce strong but brief peristaltic movements. This agent stimulates sensory nerve endings to produce parasympathetic reflexes that result in peristalsis of the colon. Local axon reflexes and segmental reflexes are stimulated, which produces widespread peristalsis of the colon.
○ Senna undergoes conversion to active metabolites in the colon that stimulate the myenteric plexus and induce net fluid secretion.
○ Response in 6-12 up to 24 hours.

Side Effects
○ Electrolyte abnormalities depending on volume of stool
○ Melanosis coli – brown pigmentation of the colon

Clinical Indication
Relief of constipation

D. DETERGENT LAXATIVES
Agent
Docusate (Colace)
Mechanism of Action
○ Docusate is an anionic surfactant that is believed to stimulate intestinal secretion and increase the penetration of fluid into the stool by emulsifying feces, water, and fat
○ Soft feces = easier passage
○ Minimal effect on peristalsis
○ Initial response in 1-3 days

Clinical Indications
Docusate is used to soften or prevent the formation of hard stools.

E. LUBRICANTS
Agents
○ Glycerin suppository/enema
○ Mineral oil enema

Mechanism of Action
○ Due to its osmotic effect, glycerin softens, lubricates, and facilitates the elimination of inspissated feces. By serving as a bowel irritant it may also stimulate rectal contractions.
○ Mineral oil helps soften (by coating fecal material with mineral oil) and lubricate hard stools, easing their passage without irritating the mucosa.
○ Lubricants may stimulate a response within 30 minutes.

Side effects/contraindications
Mineral oil should never be administered orally, particularly to debilitated patients - inhalation/aspiration of the oil can lead to lipoid pneumonitis.

Clinical Indications
Usually reserved for treatment of fecal impaction

F. LARGE VOLUME ENEMAS
Agents
Sodium phosphate enema (Fleet’s enema)

Mechanism of Action
Soften stool by increasing water content
Distend distal colon inducing peristalsis

Clinical Indications
Usually reserved for treatment of fecal impaction
III. Pharmacologic Palliation of Nausea and Vomiting

A. Pathophysiology of nausea and vomiting

Psychological stimuli → Cerebral Cortex

Intracranial pressure → Cerebral Cortex

Motion sickness → Vestibular apparatus (cholinergic, histaminic Receptors)

Vestibular disease → Vestibular apparatus (cholinergic, histaminic Receptors)

Drugs
Uremia → Chemoreceptor Trigger Zone (dopaminergic, 5HT3 receptors)
Ketosis → Chemoreceptor Trigger Zone (dopaminergic, 5HT3 receptors)
Irradiation → Chemoreceptor Trigger Zone (dopaminergic, 5HT3 receptors)

Gastric irritation → Gastrointestinal tract (vagal nerve)
Intestinal distention → Gastrointestinal tract (vagal nerve)
Gag reflex → Gastrointestinal tract (vagal nerve) (cholinergic, histaminic, 5HT3, dopamine receptors)

Chemoreceptor trigger zone is located in the area postrema outside the blood brain barrier
Vomiting Center is located in the lateral reticular formation of the medulla and coordinates the motor mechanisms of vomiting

B. Antiemetic Drugs

Dopamine receptor antagonists
Phenothiazines - Prochlorperazine (Compazine)
Butyrophenones - Haloperidol (Haldol)
Benzamides – Metoclopramide (Reglan)

Serotonin (5HT3) antagonists
Ondansetron (Zofran)
Granisetron (Kytril)

Antihistamines
Promethazine (Phergan)
Diphenhydramine
Anticholinergics
Scopolamine

Corticosteroids
Dexamethasone

Benzodiazepenes
Lorazepam
Alprazolam

C. Select Antiemetics

Agent - Metoclopramide (Reglan)

Mechanism of Action
○ Antiemetic properties are due to central and peripheral dopamine receptor inhibition
○ Within the gastrointestinal tract activation of dopamine receptors inhibits cholinergic smooth muscle stimulation; blockade of this effect is believed to be the primary prokinetic mechanism of action of metoclopramide. Metoclopramide increases esophageal peristaltic amplitude, increase lower esophageal sphincter pressure, and enhance gastric emptying but has no effect on small intestine or colonic motility

Adverse Effects
○ Extrapyramidal effects, such as dystonia, akathisia, parkinsonism, may develop due to central dopamine receptor blockade.
○ Acute dystonic reactions, such as trismus, torticollis, facial spasms, can be treated with an anticholinergic agent (benztropine or diphenhydramine).
○ Cautious use in patients with Parkinson’s Disease

Clinical Indications
○ Vomiting due to dysmotility of the upper GI tract - gastric stasis and diabetic gastroparesis
○ Chemotherapy induced nausea and vomiting

Agent - Prochlorperazine (Compazine)

Mechanisms of Action
○ Prochlorperazine acts centrally by inhibiting the dopamine receptors in the medullary chemoreceptor trigger zone
○ It peripherally blocks the vagus nerve in the gastrointestinal tract
Adverse Effects
Extrapyramidal effects, dystonic reactions

Clinical Indications
○ Opioid related nausea and vomiting
○ Moderately effective for nausea caused by various GI disorders (ie gastroenteritis)

Agent - Promethazine (Phenergan)

Mechanism of Action
Antiemetic effects come from its H(1) receptor blocking properties.

Adverse Effects
Sedation

Clinical Indications
Promethazine is effective in the active and prophylactic treatment of motion sickness

Agent - Ondansetron (Zofran); Granisetron (Kytril)

Mechanism of Action
○ Ondansetron is a competitive, highly selective antagonist of 5-hydroxytryptamine (serotonin) subtype 3 (5-HT 3) receptors. 5-HT 3 receptors are present peripherally on vagal nerve terminals and centrally in the area postrema of the brain. It is not certain whether ondansetron's action is mediated peripherally, centrally, or both. Cytotoxic drugs and radiation appear to damage gastrointestinal mucosa, causing the release of serotonin from the enterochromaffin cells of the gastrointestinal tract. Stimulation of 5-HT 3 receptors causes transmission of sensory signals to the vomiting center via vagal afferent fibers to induce vomiting. By binding to 5-HT 3 receptors, ondansetron blocks vomiting mediated by serotonin release.

Side Effects
Most common side effect is headache
Small but statistically significant prolongation of the QT interval

Clinical Indications
○ Chemotherapy induced nausea and vomiting and its prophylaxis
○ Radiation induced nausea and vomiting and its prophylaxis
Agent Scopolamine

Mechanism of Action
Pure anticholinergic agent

Adverse Effects
- *Dry mouth (xerostomia)
- Acute narrow angle glaucoma (contraindicated in patients with known glaucoma)
- Urinary retention
- Confusion

Clinical Indications
- Treatment of motion sickness
- *In patients who are hours to days from death and who cannot swallow their own secretions, it is used to decrease production of saliva
PRINCIPLES OF CLINICAL TOXICOLOGY

Date: January 15, 2015 – 10:30 AM
Reading Assignment: none

KEY CONCEPTS AND LEARNING OBJECTIVES
At the end of this lecture the learner will be able to:

1. Define toxicology and the dose-response relationships which describe toxicological effects;
2. Describe the types of toxic agents and routes of exposure;
3. Describe the organ systems commonly affected by toxic agents;
4. List the ratings for teratogenicity;
5. Describe the general diagnostic and treatment strategies for acutely poisoned patients; and
6. Describe common toxic syndromes.
PRINCIPLES OF CLINICAL TOXICOLOGY

I. Definition: Toxicology is the study of the adverse effects of chemicals on living organisms.

II. Introduction

A. Major toxic endpoints
 1. Organ toxicity (hepatotoxicity, neurotoxicity)
 2. Carcinogenesis and mutagenesis
 3. Developmental toxicology or teratogenicity

B. Types of toxic substances
 1. Drugs
 2. Food additives
 3. Industrial chemicals (benzene)
 4. Environmental pollutants (dioxin)
 5. Natural toxins (aflatoxin)
 6. Household poisons (insecticides)
 7. Nerve gases (soman)
 8. Bioterroristic (select) agents (anthrax)

C. Major routes of exposure
 1. Oral
 2. Inhalation (solvents, gases)
 3. Dermal (pesticides)

D. Types of exposures
 1. Intentional ingestion/suicide (“sleeping pills”)
 2. Occupational exposure (farmers, industrial hazards)
 3. Environmental exposure (ozone, food contaminants)
 4. Accidental poisoning (drugs, pesticides, household products)
 5. Terrorism

E. Length of exposure
 1. Acute - single dose, usually large
 2. Chronic - long term

III. Dose-response relationship - All substances are poisons at a high enough dose

A. Dose-response – Within a population, the relationship defining the proportion of individuals responding to a given dose. For example, the number of mortalities increases as a function of dose. This may be affected by:
 1. Route of exposure
 2. Biotransformation
 3. Health and nutritional state of the individual
 4. Age (childhood, senescent)
5. Genetics

B. \(\text{LD}_{50} \) – The dose of a substance that kills 50\% of subjects (animals)

C. Comparison of \(\text{LD}_{50} \) values for various toxic compounds in experimental animals.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\text{LD}_{50}) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>10,000</td>
</tr>
<tr>
<td>DDT</td>
<td>100</td>
</tr>
<tr>
<td>Nicotine</td>
<td>1</td>
</tr>
<tr>
<td>Tetrodotoxin</td>
<td>0.1</td>
</tr>
<tr>
<td>Botulinus toxin</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

D. For drugs, \(\text{ED}_{50} \) is the dose required to achieve a half-maximal effect. \(\text{TD}_{50} \) is the dose required to achieve 50\% toxicity (e.g. liver toxicity). Toxic actions may or may not be extensions of the therapeutic action of drugs.

D. The Therapeutic Index (margin of safety) is calculated by dividing \(\text{LD}_{50} \), or \(\text{TD}_{50} \), by \(\text{ED}_{50} \). For acetaminophen the margin of safety is about 10; for digitalis it can be as low as 2.

E. Threshold Dose - the dose below which some compounds are considered to be non-toxic. This is also called the No Observed Adverse Effect Level (NOAEL) and is determined in animals using the most sensitive species.

F. Dose-response curves illustrating NOAEL:

In the figure above, Compound A produces a toxic response at all doses; compound B shows a NOAEL below which the compound is safe. Most carcinogenic chemicals are believed to be similar to A. Most clinically available drugs have a dose-response similar to B. The therapeutic dose is considered safe, but an overdose dose may be toxic.

G. Acceptable Daily Limit (ADL) is used to determine the safe level of additives and contaminants (pesticides, veterinary drugs) in food. The ADL is usually some factor such as 1/100 to 1/1000 of the NOAEL.
H. Threshold Limit Value (TLV) and Permissible Exposure Limit (PEL), also determined from NOAEL, are important in regulating industrial exposure to toxic chemicals.

IV. Toxicological End Points

A. Organ System Toxicity

1. Blood
 a. Chemical-induced hypoxia (CO)
 b. Aplastic anemia (chloramphenicol)

2. Immune System Toxicity
 a. Immunosuppression (cyclophosphamide, cigarette smoke)
 b. Hypersensitivity reactions (penicillin)

3. Liver Toxicity
 a. Hepatocyte death (acetaminophen, carbon tetrachloride)
 b. Cirrhosis (ethanol)

4. Kidney Toxicity
 a. Tubular necrosis (heavy metals, cisplatin)
 b. Papillary necrosis (NSAIDs)

5. Respiratory Toxicity
 a. Fibrosis (chronic) – ozone, asbestos
 b. Emphysema (chronic) – tobacco smoking

6. Neurotoxicity
 a. Neuropathies (methylmercury, trimethyltin)
 b. Myelinopathies (hexachlorophene, lead)

7. Skin Toxicity
 a. Contact dermatitis (phenols)
 b. Phototoxicity/photosensitivity (tetracyclines, sulfonamides)

8. Other sites of toxicities
 a. Heart (doxorubicin)
 b. Male reproductive system (high dose androgens)
 c. Female reproductive system (endocrine disrupters)
 d. Eye (organophosphates cause cataracts)

B. Chemical Carcinogenesis – A major cause of cancer. Basic tenet - the chemical becomes adducted to DNA covalently → misreading of DNA in daughter cells → a mutagenic event that initiates a series of changes leading to cancer. Alkylating agents may directly modify DNA by covalent interaction; most chemical carcinogens are metabolically activated to
reactive metabolites. Some chemicals may modify DNA by formation of reactive oxygen species that modify DNA by oxidization.

1. Examples of chemicals that cause cancer and are metabolized to DNA adducts
 a. Aromatic amines (amino acid pyrolysis products from cooking meat; 4-aminobiphenyl from cigarette smoke)
 b. Nitrosamines (N-nitrosonicotine from cigarette smoke; nitrosamines formed from sodium nitrite in preserved meat)
 c. Polycyclic aromatic hydrocarbons (in burned meat, cigarette smoke)
 d. Aflatoxin (from Aspergillus flavus mold growing on grains)

2. Alkylating agents
 a. Cyclophosphamide
 b. Melphalan
 c. Nitrogen mustard (mechlorethamine)

C. Teratogenicity – the study of congenital defects

1. The FDA has assigned risk factors to drugs based on the level of risk they pose to the fetus.
 a. Category A – Studies in women during the first trimester are negative.
 b. Category B – Either animal studies have not demonstrated a risk and studies in women are not available; or an adverse effect seen in animals was not confirmed in a human trial in the first trimester.
 c. Category C – Either animal studies revealed adverse fetal effects with no verification from human studies; or studies in women and animals are not available. Drugs should be given only if the potential benefit justifies the potential risk to the fetus.
 d. Category D – There is positive evidence of human risk, but the benefits to the woman may be acceptable in a life threatening or serious disorder for which safer drugs are not available.
 e. Category X – Animal and human data reveal fetal impacts or there is evidence of fetal risk based on human experience or both, and the risk of the drug clearly outweighs any possible benefit. The drug is contraindicated in women who are or who may become pregnant.

2. Examples of drugs and chemicals known to be teratogenic – thalidomide, tetracycline, cyclophosphamide, phenytoin, cocaine, ethanol

V. Acute Treatment of the Poisoned Patient

A. Introduction

1. Acute poisonings are common in the emergency department.
2. Patients most often present with signs and symptoms, not firm diagnoses.
3. It is important to determine if intoxication represents a suicide attempt, an accident or a failed homicide as psychiatric care or police intervention may be required.
4. A patient may be unwilling or unable to relate the quantity, identity, exposure route, or dosing time of the agent. Thus, supportive care is often the mainstay of management unless a toxicological syndrome that has an antidote is present.
5. There are far more potential poisons than anyone can appreciate, much less manage. Familiarize yourself with regional poison control and drug information centers.
6. Emergency management takes first priority; may proceed simultaneously with H&P, laboratory testing, decontamination, antidote administration and toxicant removal.

B. Emergency Management (ABCD’s – airway, breathing, circulation, dextrose)

1. Most common causes of death due to acute poisoning – airway obstruction, aspiration, respiratory arrest, hypotension (circulating volume, cardiac contractility/rhythm, or vasodilation), cellular hypoxia, hyperthermia, and seizures.
2. Initial considerations include ensuring adequate airway, cervical spine protection, ventilation and circulation/perfusion.
3. In any compromised patient, it is appropriate to administer oxygen, monitor cardiac rhythm and establish IV access. Before beginning infusion, baseline blood work should be drawn along with extra tubes for additional testing.
4. In some ER’s patients with altered mental status immediately receive thiamine (Wernicke’s syndrome) and glucose. When a patient with a depressed sensorium does not respond to glucose, it may be followed by IV naloxone. It is unnecessary to administer glucose if blood levels are within an acceptable range.

C. History and Physical Examination

1. History
 a. If possible after stabilization, identify the poison, and question the patient, paramedics and family for exposure details/past medical history.
 b. After industrial accidents or fires, determine what the patient was doing immediately prior to becoming ill (e.g. was he/she trapped in a smoke-filled room?)
2. Physical Examination
 a. Physical examination is important, particularly in the absence of reliable history; it may provide the only clues for substance identification. Occasionally, injury patterns or toxic syndromes are identified that are characteristic of particular categories of poisons, thus permitting specific as opposed to supportive therapy.
 b. Especially important
 i. Vital signs – blood pressure, heart rate, respiration, and temperature.
 ii. Eyes – pupil size, nystagmus, ophthalmoplegia.
 iii. Mouth – corrosive burns, odors, dry mouth.
 iv. Skin – flushed, hot, dry, sweating, cyanotic.
 v. Abdomen – ileus, hyperactive bowel sounds.
 vi. Nervous system – seizures, ataxia, twitching.
c. **Cholinergic or Anticholinesterase Syndrome** – organophosphate and carbamate insecticides.
 i. Peripheral effects arise from muscarinic and nicotinic receptor stimulation. Muscarinic - sweating, pupillary constriction, lacrimation, sialorrhea, wheezing, abdominal cramps, vomiting, diarrhea, bradycardia, hypotension, blurred vision and urinary incontinence. Nicotinic - fasciculations, cramps, weakness, paralysis, and respiratory compromise.
 ii. Central effects such as anxiety, restlessness, seizures, coma, areflexia and altered respiratory patterns are less specific than peripheral signs.

c. **Anticholinergic Syndrome** - atropine, scopolamine, tricyclic antidepressants, antihistamines, jimson weed
 i. Peripheral effects – dry mouth, dysphagia, blurred vision, pupillary dilation, tachycardia, hyperthermia, dry skin, flushing, abdominal distention, urinary retention.
 ii. Central effects - lethargy, excitement, seizures, confusion, delirium, hallucinations, coma, ataxia, respiratory failure (again nonspecific).

d. **Hemoglobinopathy syndromes** - can cause hypoxia, headache, disorientation, coma, nausea, vomiting, cardiac dysfunction, acidosis and death.
 i. Carboxyhemoglobinemia is more common – from inhalation of excessive CO or follows absorption of methylene chloride, a solvent metabolized to CO; does not cause early cyanosis despite the production of severe hypoxia.
 ii. Methemoglobinemia - when ferrous (+2) iron of hemoglobin is oxidized to the ferric (+3) state; usually does not require treatment until present in excess of 30%. Cyanosis observed.

e. **Narcotic Overdose** - classically presents with pinpoint pupils, respiratory depression and hypotension; rarely, CNS excitation occurs as well as pupillary dilatation. Heroin, oxycodone, morphine and meperidine are common offenders. IV naloxone often produces prompt improvement; may precipitate withdrawal.

f. **Sympathomimetic Excess** - manifested as nervousness, agitation, tremor, diaphoresis/dehydration with time, CNS excitation, hypertension, tachycardia, and seizures.

g. **Withdrawal Syndrome** - suspected in anxious individuals displaying drug-seeking behavior.
 i. Physical signs of opiate withdrawal - mydriasis, piloerection, rhinorrhea and lacrimation. Excluding neonates, opiate withdrawal is not associated with seizures.
 ii. Withdrawal of many kinds of non-opiate CNS depressants may lead to hallucinations, tachycardia, hyperpyrexia and seizures.

D. **Common Signs** - certain major toxic signs frequently appear that are sometimes valuable in narrowing the spectrum of causative agents. They are managed as they are identified and may or may not be part of a toxic syndrome. Examples:

1. Cardiac conduction and rhythm problems - should be evaluated in any poisoned patient; mandatory for all but trivial ingestions. Although there are no pathognomonic patterns, some are suggestive. A few examples follow:
a. AV block - digitalis glycosides
b. Sinus bradycardia - digitalis, beta-blockers, calcium channel blockers and cholinergic toxicants.
c. Sinus tachycardia - many types of poisoning and non-toxicological conditions; nonspecific.

2. Metabolic acidosis - an important and moderately specific sign; often seen in overdoses with aspirin, methanol and ethylene glycol. Many metabolic abnormalities can accompany or simulate intoxication such as diabetic ketoacidosis, lactic acidosis, or uremia.

3. Gastrointestinal dysfunction - ranges in severity from abdominal cramping, nausea and vomiting in mild cholinergic syndrome to bloody diarrhea after iron poisoning; minimally specific.

4. Seizures - complicate many intoxications, withdrawals, structural lesions and CNS infections. Supportive care, anticonvulsants, and correction of underlying abnormalities are the mainstays of treatment. Diazepam and lorazepam are useful to achieve acute control; phenobarbital for longer term management. Phenytoin is not a good choice for seizures secondary to intoxications.

E. Laboratory Studies

1. Baseline tests in non-trivial cases should usually include electrolytes (with anion gap), BUN and creatinine, glucose, arterial blood gases, liver function tests, EKG and occasionally specific X-rays.

2. Toxicology screens may be of value in management, but delays in obtaining results limit their utility. "Screening for everything" is impossible, and it is impractical to screen for substances that are likely irrelevant. May be useful when selecting treatment options, antidotes, etc.

3. Serum levels are important in ethanol, lithium, theophylline, digoxin, acetaminophen and aspirin overdoses as well as in methanol and ethylene glycol ingestions. However, other levels such as tricyclic antidepressant concentrations are of lesser value; they rarely alter acute management.

4. X-rays may reveal features such as pulmonary edema, aspiration pneumonia, radiopaque agents and intra-intestinal drug packages. CT with head trauma.

F. Removal and Deactivation of Absorbed Agents - removal of unabsorbed agents from the eyes, skin and gut should proceed as soon as possible after initial stabilization.

1. Decontamination
 a. Eyes - immediate irrigation is the best initial move, especially with caustic agents.
 b. Skin - a shower works well for most exposures. Bag clothing.
 c. Gut - the best technique for GI decontamination remains a matter of debate. “Reflex” use of syrup of ipecac, charcoal, lavage or whole bowel irrigation may complicate the situation. The decision to decontaminate the gut and the technique selected are individualized for each patient; most ingested materials will likely be out of the stomach within approximately one hour.
i. Vomiting induced by syrup of ipecac has many limitations. An alert patient who has not ingested a caustic material, sharps, a petroleum distillate or an agent that produces seizures may be a candidate for this technique; best suited for use in the home under the direction of a poison center.

ii. Gastric lavage may help empty the stomach even in a comatose patient unless ingested particles are too large; may be difficult in children due to size and cooperation. If there is any question about the adequacy of the gag reflex, tracheal intubation must precede lavage. Lavage is generally contraindicated in caustic ingestions.

iii. Activated charcoal is often used to treat ingestions of adsorbable material. As charcoal is constipating and may cause bowel obstruction, most clinicians administer with sorbitol or a saline cathartic. Castor oil or mineral oil is not used because of risk of aspiration. Cathartics are not used with corrosive agents; they may increase the injury.

iii. Whole bowel irrigation with solutions such as Go Lytely may be used in stable, cooperative patients who have ingested sustained release preparations, etc.

2. Deactivation/Dilution
 a. A few toxicants may be neutralized by other agents – e.g. ingested iodine can be complexed by starch lavage.
 a. Dilution is fine for cutaneous and ocular exposures. Its use in ingestions of anything aside from caustics may be contraindicated; it may enhance both aspiration risk and absorption. If required for oral poison, water is usually the best choice in limited quantities (distention may cause gastric emptying).

G. Antidotes – specific antidotes exist for a few poisons. Several important examples follow:

1. Deferoxamine for iron
2. Acetylcysteine for acetaminophen
3. 2-PAM chloride and atropine for organophosphates
4. Amyl nitrite, sodium nitrite and sodium thiosulfate for cyanide
5. Naloxone for opiates
6. Atropine for carbamates
7. Physostigmine for anticholinergic poisoning
8. Ethanol for methanol and ethylene glycol
9. Oxygen for carbon monoxide
10. Digitalis antibodies
11. Flumazenil for benzodiazepines

H. Elimination of Absorbed Substances - always desirable in theory but not always practical or possible. Some available modalities include repeated doses of charcoal, forced diuresis (mannitol or furosemide; questioned by some), ion trapping in urine, hemodialysis (peritoneal dialysis), and hemoperfusion. There are at least five indications for these methods.
1. Severe poisoning syndromes that do not respond to supportive therapy – e.g. refractory hypotension, seizures or arrhythmias.
2. Deterioration despite full supportive care.
3. Overwhelming dose of a chemical that the body cannot handle estimated on the basis of history or levels (methanol ingestion)
4. Impairment of normal excretory routes (aspirin overdose in an individual with chronic renal failure)
5. Severe disease that precludes tolerance of supportive care (congestive heart failure suggests an individual can not handle the fluid load associated the alkaline diuresis used to treat aspirin overdose)
Antiparasitic Agents

January 16, 2015
Stuart Johnson, M.D.

Introduction to Antiparasitic Therapy

- Drugs intermittently difficult to obtain
 - Low usage
 - Some only available through CDC
- Available drugs lack FDA approval
- Lagging new drug development
 - Little financial incentive
 - Limited use in US and industrialized world
 - No market in third world countries
- Many agents have limited efficacy or serious toxicity

Distinction between Protozoal & Helminthic Infection

<table>
<thead>
<tr>
<th>Protozoa</th>
<th>Helminths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete replication within definitive host</td>
<td>Life-cycle involves more than definitive host</td>
</tr>
<tr>
<td>Clinical illness results from single exposure</td>
<td>Repeated exposures necessary for disease</td>
</tr>
<tr>
<td>Treatment goal: Eradication</td>
<td>Treatment goal: Eradication or reduction of worm burden</td>
</tr>
</tbody>
</table>
Definitions

- **Definitive Host** vs. **Intermediate Host**
 - (Harbors sexual parasitic stage)
 - (Harbors larval or asexual parasitic stage)

 vs. **Incidental Host**
 - (not necessary for parasitic survival)

- **Gametogony** vs. **Schizogony**
 - (Sexual development)
 - (Asexual development)

Targets of Chemotherapy

- Unique enzymes found only in the parasite
 - pyruvate:ferridoxin oxireductase in *Giardia*

- Enzymes found in both host and parasite, but indispensable only for the parasite
 - lanosterol C-14α demethylase in *Leishmania*

- Common biochemical functions found in both host and parasite, but with different properties
 - DHFR in *Plasmodium and Toxoplasma*

Malaria: Plasmodium species that cause Human Malaria

- *P. falciparum*
 - responsible for nearly all fatal disease
 - drug resistance is an important therapeutic problem

- *P. vivax* (dormant liver stage – ‘hypnozoite’)
 - Nearly ¼ of malaria cases outside of Africa

- *P. malariae*
- *P. ovale* (also develops hypnozoites)
- *P. knowlesi* (recently recognized species)
Clinical Case (Hines VA Hosp., Jul 6, 2011)

- **HPI:** 28 year old male who presents with a 5 day history of fever (up to 103.5 F).
 - ROS +: malaise, myalgias, emesis, diarrhea, backache, headache
 - ROS -: No respiratory complaints, no bleeding, no urinary or focal neurologic symptoms
- 10 days prior to presentation he and a friend had been mountain biking in Southern Illinois (near Carbondale).
 - Following biking he and his friend both noticed they had ticks attached to themselves
- Friend was diagnosed with “Rocky Mountain Spotted Fever” one day prior to our patient’s presentation

Clinical Case, cont.

- **Past Medical History:**
 - No significant
- **Social History:**
 - No alcohol, drug or tobacco use
 - Sexually active with his fiancee
 - Recently traveled to Colorado 3 weeks prior to symptoms
 - Planning on going back to school in Colorado to study mining
- **Military History:**
 - US Marine Corps: honorably discharged one month ago
 - 3 Combat tours: 2 in Afghanistan and 1 in Iraq
 - Never had malaria before but men in his battalion did
 - Stationed in Helmand province in 2010 – 2011
 - Was prescribed doxycycline prophylaxis, but was not always compliant

Clinical Case, Hospital course

- **Day 6:**
 - Treatment Changed to:
 - chloroquine x 3 days & primaquine x 14 days

Representative thin smear of *P. vivax* infection
Targets of Malaria Treatment Agents

Blood
- Schizonticide: chloroquine, proguanil, pyrimethamine, mefloquine, atovaquone, quinine, artesunate

Tissue
- Schizonticide: primaquine, pyrimethamine (atovaquone & proguanil for Pf)

Gametocide
- Primaquine
- Artemesinins

Sporonticide
- pyrimethamine, proguanil

Suppressive prophylaxis
- chloroquine, proguanil, pyrimethamine, mefloquine, atovaquone, doxycycline

Terminal prophylaxis
- primaquine

Causal prophylaxis
- primaquine, atovaquone/proguanil for Pf, not Pv

General Principles of Malaria Treatment

- Because of increasing drug resistance, it is important to emphasize prevention
- Specific treatment will depend on geographical area visited, patient’s age, pregnancy,
Major Antimalarial Drugs

- Chloroquine
- Quinine/Quinidine
- Amodiaquine
- Mefloquine
- Primaquine
- Pyrimethamine
- Proguanil
- Atovaquone
- Halofantrine
- Artemisinin and its derivatives
- Antibiotics (tetracycline, doxycycline, azithromycin, clindamycin)

Site of Action of Antimalarial Drugs

Chloroquine, a 4-aminoquinoline

- Used for prophylaxis and treatment
 - Initial half-life: 3-5 d; Terminal half-life: 1-2 mo
 - Schizonticidal to all plasmodial species; not active against exoerythrocytic (liver phase) parasites
 - MOA: prevents polymerization of heme to hemozoin; build up of free heme; toxic to parasite
 - Resistance in *P. falciparum* is wide-spread
 - ADRs: pruritis; Uncommon - nausea, vomiting; abdominal pain, HA, anorexia, malaise, blurred vision
Spread of Chloroquine-Resistant
P. falciparum

- Chloroquine resistance in *P. falciparum* is widespread
- Chloroquine-susceptible *P. falciparum*: Central America, Caribbean, Middle East (although pockets of resistance noted)
- *P. falciparum* resistance to quinine in SE Asia
- Resistance is rare with other species (exception is chloroquine-resistant *P. vivax* in Papua New Guinea & Indonesia)

WHO Antimalarial Resistance Classification

Chloroquine & Antimalarial Drug Resistance

- Chloroquine resistance in *P. falciparum* is widespread
- Chloroquine-susceptible *P. falciparum*: Central America, Caribbean, Middle East (although pockets of resistance noted)
- *P. falciparum* resistance to quinine in SE Asia
- Resistance is rare with other species (exception is chloroquine-resistant *P. vivax* in Papua New Guinea & Indonesia)
Mefloquine, a derivative of chloroquine

- Used for prophylaxis and treatment all forms malaria
- Schizonticidal; MOA: like chloroquine probably acts by increasing free heme (toxic to parasite)
- Option for prophylaxis in areas of chloroquine-resistant falciparum
- Adverse: nausea, vomiting, sleep & behavioral problems; Neuropsychiatric toxicities (seizures, psychosis) 7/29/13
 Black box warning added for neurologic and psychiatric side affects; Rare - cardiac arrhythmias
- Contraindications: seizures, psych d/o, arrhythmia
- Drug interactions: quinine, quinidine, halofantrine

Atovaquone (combination with proguanil: Malarone), a naphthoquinone antibiotic

- MOA: inhibits parasite mitochondrial electron transport
- Resistance develops quickly when used alone, however it is quite effective when used in combination with proguanil
- Better tolerated than mefloquine for prophylaxis
- Daily administration
- Safety in pregnancy unknown

Doxycycline, a semisynthetic tetracycline

- MOA: protein synthesis inhibition
- DOC: Prophylaxis against mefloquine-resistant P falciparum (i.e., Travelers to border areas in Thailand)
- Daily administration
- Not indicated for prophylaxis in children & pregnant women

Alternatives Agents
(not widely used for prophylaxis)

- Pyrimethamine and sulfadoxine (Fansidar)
 - Rare, but serious cutaneous reactions
 - Self-treatment prophylaxis strategy only
- Proguanil with chloroquine
 - Not available in US
 - Slightly less effective than mefloquine
 - Proguanil: daily, chloroquine: weekly
Quinine* and Quinidine

* a naturally occurring alkaloid found in the bark of the cinchona tree; aka 'Jesuit's Powder'

- DOC for treatment of severe disease with chloroquine-resistant P. falciparum malaria
- Quinine only oral in USA, Quinidine IV in USA (cardiac monitoring recommended with IV Rx)
- Used with a second agent (e.g., doxycycline) to shorten duration and limit toxicity
- ADRs: GI, Cinchonism (headache, nausea, visual disturbances, dizziness, tinnitus)
- Quinine can be used, if needed, in pregnancy

Primaquine, an 8-aminoquinoline

- Used to treat exoerythrocytic forms of vivax and ovale malaria; gametocidal
 - DOC for RADICAL CURE after chloroquine
 - Used in terminal prophylaxis, but rarely required
- MOA: probably similar to chloroquine
- ADRs: Infrequent - nausea, abdominal pain, cramps; Rare - hematologic, arrhythmias
- Contraindications: granulocytopenia
- Relative Contraindication: G6PD deficiency → hemolysis; Testing recommended prior to Rx

Artemisinin (Quinghausu)

- Several derivatives, e.g., Artemether
- Rapidly acting schizonticide
- Second agent used to prevent recrudescence (ACT: artemisinin combination therapies)
- MOA: production of toxic free radicals in parasite food vacuole
- Intravenous artesunate is available from the CDC for treatment of severe malaria in the U.S.*
- Coartem® (artemether 20 mg/lumefantrine 120 mg) is available in the US (approved by the FDA for treatment of uncomplicated falciparum malaria).

Rationale for ACT*

*Artemisinin combination therapy

Baird JK, NEJM 2005;352:1565

Malaria Prevention

- Chloroquine
 - Only in areas without resistant *P. falciparum*
- Mefloquine
- Atovaquone and proguanil (Malarone)
- Doxycycline
 - DOC in areas with multi-drug resistance (take shortly after meal; also risk for vaginal candidiasis in women)
- Chloroquine and proguanil
 - Not available in the US
- Primaquine
 - Terminal prophylaxis for *P. vivax* & *P. ovale* infections in patients without severe G6PD deficiency

Malaria Prevention
(Recommended Schedule in relation to travel)

<table>
<thead>
<tr>
<th></th>
<th>Start</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine</td>
<td>1-2 wks prior</td>
<td>4 wks after</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>1-2 wks prior</td>
<td>4 wks after</td>
</tr>
<tr>
<td>Malarone</td>
<td>1-2 days prior</td>
<td>7 days after</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>1-2 days prior</td>
<td>4 wks after</td>
</tr>
</tbody>
</table>
Malaria Treatment

- Chloroquine-sensitive *P. falciparum* infections
 - Chloroquine 600 mg base x 1, then 300 mg @ 6, 24, & 48 h

- *P. vivax* and *P. ovale* infections
 - Chloroquine plus primaquine (some exceptions) PQ: 30 mg base qd x 14 d

- Chloroquine-resistant *P. falciparum* infections, Uncomplicated
 - Atovaquone-proguanil (Malarone) 4 tabs qd x 3 days
 - Artemether-lumefantrine (Coartem) 2 tabs bid x 3 days (2nd dose 8 hrs after first dose)
 - Quinine 3-7 days* plus doxycycline, tetracycline, or clindamycin
 (*7 days for non-immune travelers & cases from SEA* c. 542 mg (650 mg salt) tid)
 - Mefloquine 664 mg base (750 mg salt) followed by 456 mg base (500 mg salt) given 6 to 12 h later
 (mefloquine should not be used alone in areas with high resistance, such as at the Thai-Burmese or Thai-Cambodian borders)

Malaria Treatment

- Chloroquine-resistant *P. falciparum* infections, Complicated*
 - Quinidine (iv) by loading dose followed by continuous infusion + doxycycline or clindamycin
 - Artemisinin drugs (IV, IM, or by rectal suppository)
 - Consider exchange transfusions if parasite is > 10%

Notes: *Complicated or severe malaria is defined as coma or severely altered mental status, hypoglycemia, renal failure, parasitemia > 5%, seizures other than 1 short febrile seizure, respiratory distress, shock, etc.*

Severe malaria requires parenteral therapy and the most intense level of monitoring available in your setting; monitor glucose for hypoglycemia and EKG. If possible, for QTc prolongation from either quinidine or quinine.

Above recommendations are ideal, but need to weigh the risk and benefits of doxycycline in children and HIV risk for exchange transfusion.

Treatment of *P. vivax* Infections possibly Resistant to Chloroquine

- *P. vivax* infections acquired in Papua New Guinea and Indonesia
 - Quinine sulfate plus doxycycline plus primaquine
 - Atovaquone-proguanil plus primaquine
 - Mefloquine plus primaquine

- *P. vivax* infections acquired elsewhere*
 - Chloroquine initially, but if no response, then change to one of the above regimens used for chloroquine-resistant infections.

* Rare cases of chloroquine-resistant *P. vivax* have also been documented in Burma (Myanmar), India, and Central and South America.
Antiamebic Drugs

<table>
<thead>
<tr>
<th>Tissue Amebicides</th>
<th>Luminal Amebicides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metronidazole</td>
<td>Diloxanide furoate</td>
</tr>
<tr>
<td>Emetine</td>
<td>Iodoquinol</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Paromomycin</td>
</tr>
</tbody>
</table>

Auranofin, a drug used for treating rheumatoid arthritis, was identified in an automated, high throughput screen as active against *E. histolytica* and shows promise in animal models; Debnath, *Nature Medicine* 2012;18:956

Metronidazole

- **DOC extraluminal (tissue) amebiasis**
 - Also treats giardia, trichomonas (and anaerobic bacteria)
 - Used for tissue stages of amebiasis including dysentery, ameboma, and liver abscess
- **MOA:** ferredoxin-linked processes reduce nitro group to a product that is lethal against anaerobic organisms
- **ADRs:** nausea, vomiting, metallic taste, disulfuram-like
- **Drug interactions:** anticoagulants, alcohol, anticonvulsants

Iodoquinol

- **Used for luminal amebic infections, other intestinal protozoa**
 - Not for parasites in the intestinal wall or extraintestinal infections
- **MOA:** unknown
- **ADRs:** Neurotoxicity and nausea and vomiting reported but rare at recommended doses
Treatment of Amebiasis

- Asymptomatic intestinal infection (carriers)
 - Not treated in endemic areas
 - Luminal agents:
 - Iodoquinol
 - Paromomycin
 - Diloxanide furoate
- Colitis, liver abscess, Ameboma
 - Metronidazole plus luminal agent

Amoebic Liver Abscess

![Image of liver abscess]

Trypanosomiasis

African American
Drugs for Trypanosomiasis

- African (T. brucei gambiense or rhodesiense)
 - Pentamidine (does not cross BBB*) alternative to Suramin
 - Suramin (does not cross BBB*) first line Rx for hemolymphatic disease
 - Melarsoprol only agent available for late-stage T.b. rhodesiense infection
 - Efionithine
- American (T. cruzi)
 - Nifurtimox
 - Benzimidazole

* Blood brain barrier

Nifurtimox

- DOC acute T. cruzi (Chagas disease)
 - Decreases severity /eliminates detectable parasites
 - Does not eradicate infection /not effective for management of chronic disease
 - Efficacy variable /resistance noted in S. America
- ADRs: (common) GI, rash, CNS

Leishmaniasis

Cutaneous Visceral
Drugs for Leishmaniasis

- Sodium Stibogluconate
 - Mainstay of treatment for cutaneous & visceral leishmaniasis
 - ADRs: GI, fever, HA, myalgias, arthralgias, rash, QT prolongation
 - Only available through CDC
- Amphotericin B
- Liposomal amphotericin B
- Miltefosine

Cryptosporidiosis

- General management principles
 - Lactose-free diet
 - Antimotility agents
 - Restoration of immune response in HIV (esp. with PI Rx)
 - Few active agents available
- Nitazoxanide
 - New agent and good data for efficacy in immunocompetent patients and in moderately immunosuppressed HIV-infected patients
- Paromomycin
- Other potentially active agents: Azithromycin, clarithromycin

Cryptosporidiosis Manifestation in Relation to CD4 Count

Cryptosporidia in Intestinal Epithelia

Giardiasis

Treatment agents:
Primary: metronidazole, nitazoxanide,
Alternate agents: furazolidone, albendazole

TOXOPLASMOSIS

- Pyrimethamine
 - Most effective agent, need to add folinic acid
 - No role for monotherapy, need to add sulfadiazine or clindamycin
- Alternate agents:
 - azithromycin, clarithromycin, atovaquone, dapsone, TMP-SMX
- Lymphadenopathy in Immunocompetent Patients
 - Self-limiting disease
- Encephalitis in HIV
 - Treat 4–6 weeks after resolution of signs/symptoms (usually > 6 mos)
 Pyrimethamine 200 mg loading dose, then 50 – 75 mg daily + sulfadiazine 1 – 1.5gm QID or, + clindamycin 600 mg QID
 - Life-long maintenance unless CD4 count rises to > 200 for at least 6 mos
 Pyrimethamine 25 mg daily + sulfadiazine 500 mg QID
Helminths (General Comments)

- Used to eradicate or reduce the number of parasites in the intestines or tissues
- Diagnosed by finding the parasite, eggs, or larvae in the feces, urine, blood, sputum, or tissues of the host
- Oral drugs should be taken with water or after a meal
- Stools should be re-examined 2 weeks after the end of treatment
- Children's doses based on weight or BSA
- Contraindicated in pregnancy or in those with GI tract ulcers

Helminths (Specific Agents)

- Albendazole
- Mebendazole
- Thiobendazole
- Bithionol
- Diethylcarbamazine citrate
- Emetine
- Ivermectin
- Levamisole
- Metrifonate (Trichlorfon)
- Niclosamide
- Oxamniquine
- Oxantel Pamoate / Pyrantel Pamoate
- Piperazine
- Praziquantel
- Suramin
Neurocysticercosis

- Humans become intermediate hosts
- Cysts enlarge slowly with minimal to no symptoms until several years or decades after onset of infection
- Symptoms usually begin as cysts die, lose osmoregulation and swell or leak antigens causing inflammation
Neurocysticercosis
(CNS Manifestations)

- Vesicular cysticerci: Cystic lesions, viable parasites, immune tolerance with host
- Colloidal cysticerci: Enhancing lesions, implies degenerating parasite
- Involvement of the cyst is in three stages
 - Colloidal; fluid is turbid and scolex degenerates; Capsule is thick with surrounding edema
 - Granular stage; wall thickens and the scolex is mineralized
 - Calcification; final stage

Neurocysticercosis (Treatment)

- Medical treatment has been controversial
 - Intraventricular disease – No controlled trials, but treatment usually involves surgery & corticosteroids + antihelmintics
- Active agents: Albendazole* and Praziquantel
 *No direct comparisons, but likely more efficacious & less interactions with corticosteroids and anticonvulsants.

Forest plot showing the effects of cysticidal drugs on seizure recurrence in patients with parenchymal brain-enhancing lesions

![Forest plot](image-url)
Albendazole

- Useful in pinworm, ascariasis, hookworm, tichuriasis, strongyloidiasis, echinococcus, neurocysticercosis
- No effect on calcified brain cysts of neurocysticercosis
- ADRs:
 - Short term – minimal
 - Longer therapy – elevated aminotransferases, GI effects
 - 2- days after treatment may see inflammation and increased ICP with neurocysticercosis

Praziquantel

- Useful in schistosomiasis, chlonorchiasis, paragonimiasis, neurocysticercosis
- Decreased bioavailability with corticosteroid therapy
- ADRs: (mild) HA, drowsiness, dizziness, abdominal pain
 - Need to swallow whole as drug is emetogenic
- Contraindications: ocular cysticercosis (inflammation)
- Cautions: pregnancy and lactation

Mebendazole

- Useful for Ascariasis, hookworm, pinworm, Taeniasis, Trichinosis, Strongyloidiasis
- ADRs: minimal GI to neutropenia and hepatic with long term therapy; hypersensitivity
- Avoid first trimester and children under two
- Drug interactions: carbamazepine and dilantin
Pyrantel Pamoate
- Used for pinworm, *Ascaris*, hookworm
- Not trichuriasis or Strongyloidiasis
- Luminal agent
- MOA: depolarizing neuromuscular blocking
 - Causes release of AcH and inhibition of cholinesterase resulting in worm paralysis
- ADRs: mild/transient
- Cautions: Liver disease; kids <2; pregnancy

Tissue Nematode Disease
- Filariasis
 - DOC: Diethylcarbamazine
- Onchocerciasis
 - DOC: Ivermectin

Ivermectin
- TOC strongyloidiasis and onchocerciasis
 - Alternative for scabies especially in AIDS patients
 - Bancroftian filariasis, cutaneous larva migrans
- MOA: paralyzes nematodes and arthropods by intensifying GABA-mediated signals
- ADRs: (mild) hypersensitivity from worm death
 - *Mazzotti's reaction* – severe in onchocerciasis
- Cautions: pregnancy, coexisting CNS inflammation

 Fever, headache, dizziness..
Diethylcarbamazine

- **DOC:** filariasis, loiasis, tropical eosinophilia
 - With *W. bancrofti* combo with ivermectin
 - Ivermectin preferred in onchocerciasis (if used must combo with suramin)
- Mechanism – immobilizes microfilariae, alters surface structure increasing susceptibility to host defenses
- **ADR:** mild headache, weakness, nausea, sleepiness
 - Hypersensitivity reaction to dying parasite – severe reactions in case of onchocerciasis (damage to retina and optic disc)

Benefit of Trop Med School in Thailand

King of Thailand hands out post-graduate diplomas for Mahidol University