This power point is made available as an educational resource or study aid for <u>your use only</u>.

This presentation may <u>not be duplicated</u> for others and should not be redistributed <u>or posted anywhere</u> on the internet or on any personal websites.

Your use of this resource is with the acknowledgment and <u>acceptance of those restrictions</u>.

Basal Ganglia & Cerebellum – a quick overview

MHD-Neuroanatomy – Neuroscience Block

Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health

Outcomes you want to accomplish

Basal ganglia review

- \checkmark Define and identify the major divisions of the basal ganglia
- \checkmark List the major basal ganglia functional loops and roles
- ✓ List the components of the basal ganglia functional "circuitry" and associated neurotransmitters
- ✓ Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta

Basal ganglia "circuitry"

- BG have no major outputs to LMNs
 Influence LMNs via the cerebral cortex
- Input to striatum from cortex is excitatory
 Glutamate is the neurotransmitter
- Principal output from BG is via GPi + SNr
 Output to thalamus, GABA is the neurotransmitter
- Thalamocortical projections are excitatory
 Concerned with motor "intention"
- Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed

BG circuits are parallel loops

- Motor loop
 - Concerned with learned movements
- Cognitive loop
 - Concerned with motor "intention"
- Limbic loop
 - Emotional aspects of movements
- Oculomotor loop
 - Concerned with voluntary saccades (fast eye-movements)

Outcomes you want to accomplish

Cerebellum review

- ✓ Identify cerebellar peduncles and the names/projections of the deep cerebellar nuclei
- ✓ List afferent and efferent components of the cerebellar peduncles
- \checkmark Define the origins of the mossy and climbing fibers
- ✓ Define the functional components of the cerebellum (e.g. How would an injury to the cerebellar hemisphere differ from one to the flocculonodular lobe?)
- ✓ Describe the "wiring diagram" of the cerebellum and the different terminations of the mossy and climbing fibers

imary Afferents to the Cerebellum				
Tract	Origin	Termination	Peduncle	
Vestibulocerebellar	Vestibular ganglia	Nodulus and uvula - Ipsilateral	Inferior	
Vestibulocerebellar	Vestibular nuclei	Flocculus, nodulus and vermis - Bilateral	Inferior	
Anterior spinocerebellar	Ascends in contralateral spinal cord (T12-L5)	Vermis and intermediate zone - Ipsilateral	Superior	
Posterior spinocerebellar	Clarke's nucleus (T1-L2/3)	Vermis and intermediate zone - Ipsilateral	Inferior	
Cuneocerebellar	Lateral cuneate nucleus (medulla)	Vernis and intermediate zone - Ipsilateral	Inferior	
Rostral spinocerebellar	Ipsilateral spisal cord (cervical)	Vermis and intermediate zone? - Ipsilateral	Inferior Superior	
Reticulocerebellar	Lateral, paramedian, reticular tegmental nuclei	Vernis and intermediate zone - Ipsilateral	Inferior (Middle - reticula tegmental nucleur	
Trigeminocerebellar	Spinal and main sensory nucleus of V	Vermis and intermediate zone - Ipsilateral	Inferior	
Olivocerebellar	Inferior olivary, accessory olivary nuclei	All contralateral areas	Inferior	
Pontocerebellar	Pontine nuclei	Anterior and posterior lobes - Contralateral Vernis - Insilateral	Middle	

