Patient Problem

Patient is a forty-eight year old male who is a victim of a cabin fire while on a hunting trip. He was trapped in the fire and needed to be rescued by the volunteer fire department. The scene report is that he has burns involving the front and back of the torso, the head and neck area and both upper extremities. He is awake, breathing spontaneously, however, complaining of chest pain. His vital signs at the scene are pulse 105, BP 106/70, respiratory rate 28, he is wheezing and complaining of pain. He has no history of a loss of consciousness, there appears to have been no explosion during the course of the fire.

Questions:

List step-by-step the diagnostic and therapeutic procedures indicated in the early management of a burn patient.

Initial Assessment and Management

Stop Further Injury

Extinguish or remove burning clothing
Cool, but do not remove molten material

Stop Further Injury

Cold water lavage or soaks for 2° degree burns < 10%</p>

-Caution: Avoid Hypothermia

Airway Management

Airway Management Establish Patient Airway

Airway Management

 Assess for Airway Injury

 Singed Vibrissae
 Carbonaceous Material
 Mucosal Edema of Inflammatory Changes

Airway Management

Maintain Airway
–Intubation
–Neck Trauma
–Chest Wall Injury

Effect of Edema on Airway Cross-								
Sectional Area								
Tracheal Diameter	Cross- Sectional Area	Cross- Sectional Area w/1mm Edema	% Reduction					
14 mm	153 mm ²	113 mm ²	26%					
6 mm	28 mm ²	12.6 mm ²	55%					

Risk Factors for Inhalation Injury

Enclosed Space Fire
Burns of the Head and Neck
CO > 15%

Hb Affinity – CO 200 x O_2 O₂ Transport 50% with CO = 0.1%

-- Myoglobin Binding

1308064 M

10/04/98 09:48:05 SCV----9

Inhalation Injury Impact on Burn Mortality

Inhalation Injury

% TBSA

MORTALITY

Age

Question:

Using the "Rule of Nines", calculate the approximate percentage of body surface area burn.

Questions

Describe the pathological classification of burn depth and the clinical significance of burn depth. What clinical findings are used to estimate burn depth? What depth of burn would you expect to predominate in your patient?

Depth of Burn Injury
Tissue Involved
Intensity of Energy Source
Duration of Exposure

-Protein Coagulation – Cell Death

-Denaturation of protein elements
-recovery with short exposure
-Varying degrees of cell injury recovery likely
-No cell damage below this temperature

Time Surface Temperature Relationships

Hot Tap Water Time/Temperature Relationships in Scalds

Temperature	Time to Produce Serious Burn			
120°F	More than 5 minutes			
125°F	1.5 to 2 minutes			
130°F	About 30 seconds			
135°F	About 10 seconds			
140°F	Less than 5 seconds			
145°F	Less than 3 seconds			
150°F	About 1.5 seconds			
155°F	About 1 second			

Depth of Injury

First Degree

Second Degree

Partial Thickness

Third Degree

Full Thickness

BURNS: QUESTIONS

Assuming that the patient weights 80 kg, calculate the estimated fluid requirements for this patient:

-in the next 2 hours

-in the following 16 hours

-in the second 24 hours

Fluid Support

A. Required in patients with > 20% TBSA burn.

B. Crystaloid 1º fluid – first 24 hours.

Fluid Support

C. Volume requirements related to % TBSA burn & depth.

D. 50% Administered first eight hours post-burn.

Resuscitation Volumes Required

Fluid Requirements

80 Kg x 60% TBSA Burn x 4 cc/Kg/% Burn
19,200 cc/First 24 hours post-burn
First 8 hours = 9600 cc = 1200 cc/hr
Second 16 hours = 9600 cc = 600 cc/hr

Second 24 hours

.3 - .5 cc/Kg/% TBSA Burn as Colloid

+

Maintenance Fluids

Pediatric Burns

Maintenance + 2 – 4 cc/kg/% TBSA

Burns: Questions

■ How would you monitor fluid therapy?

Fluid Support

E. Titrate total based on indices of adequate volume.

- –Urine Output 0.5 1 ml/kg/hr
- -Cardiac Output
- -SVR
- -Acidosis

Burns: Questions

■ How would you manage the burn wound?

Wound Management

Initial Care
Removal of Eschar
Reconstitution of Skin Surface

Tropical Chemotherapy

Prevent progressive infection
Preserve viable tissue
Prevent systemic sepsis

Burns: Questions

Discuss the prevention and management of sepsis in the burn patient.

*Burn mortality in adults and children before and after use of topical mafenide

Burns: Questions

What are the nutritional requirements in this patient?

How are you going to manage his or her nutritional support? Metabolic Activity With Injury

15	$\overline{1}$
10 05	= 60% Burn
00	50% Burn
90 85	40% Burn
80 75 70 65	30% Burn
60 55 50	Multiple trauma with patient on ventilato
50 45 40	Severe infection, multiple trauma
35 30 25 20	10% Burn Long bone fracture
15 10 5	Peritonitis
0 -5	Postoperative
-10 -15	Mild starvation

Nutritional Support Burn Patient

Calories = 25 KCAL/KG B.W.

+

40 KCAL % TBSA Burn

Burns: Questions

In contrast to this complicated case, how would you manage a minor (less than 5% body surface area) burn?

Wound Management

Tetanus Prophylaxis
 Initial Burn Wound Care

 Debridement & Topical Therapy
 Systemic Antibiotics???

Burns: Questions

What are the differences between a thermal burn, an electrical burn, a chemical burn, and a radiation burn?

Stop Further Injury

Chemical Injury

 Copius Water Lavage
 Prolonged Eye Irrigation
 Remove Contaminated Clothing
 Dry Chemicals – Brush, Do Not Lavage

Burns: Questions

Describe the composition of the medical care team needed for the care of this patient. Multidisciplinary Burn Quality Assurance Committee Members

- Medical Director
- Nurse Manager
- Clinical Nurse Specialist
- Administrative Director
- Occupational Therapist
- Physical Therapist
- Blood Bank
 Representative

Dietician

- Infection Control RN
- Quality Assurance RN
- Social Work
- Outpatient Representative
- Pharmacy Representative

Burns: Questions

Discuss the modifications of management necessary to care for large numbers of burns that might occur in a disaster.

Triage Decision Table

Burn Siza (0% TBSA)

Benefit-to-Resource Ratio Based on Age & Total Burn Size

CAVEAT

This grid is intended only for mass burn casualty disasters where responders are overwhelmed and transfer possibilities are insufficient to meet needs.

This table is based on national data on survival and length of stay.

Age/ years	0 – 10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	71-80%	81-90%	91+%
0-1.99	High	High	Medium	Medium	Medium	Medium	Low	Low	Low	Expectant
2-4.99	Outpatient	High	High	Medium	Medium	Medium	Medium	Low	Low	Low
5-19.9	Outpatient	High	High	High	Medium	Medium	Medium	Medium	Medium	Low
20-29.9	Outpatient	High	High	High	Medium	Medium	Medium	Medium	Low	Low
30-39.9	Outpatient	High	High	Medium	Medium	Medium	Medium	Medium	Low	Low
40-49.9	Outpatient	High	High	Medium	Medium	Medium	Medium	Low	Low	Low
50-59.9	Outpatient	High	High	Medium	Medium	Medium	Low	Low	Expectant	Expectant
60-69.9	High	High	Medium	Medium	Medium	Low	Low	Low	Expectant	Expectant
70+	High	Medium	Medium	Low	Low	Expectant	Expectant	Expectant	Expectant	Expectant

Table provided by Jeffrey R. Saffle, MD, Director, Intermountain Burn Center, Salt Lake City, Utah