Achieving Optimal Control
In Type 2 Diabetes

Case Study

- 58 Year Old Journalist
- Type 2 DM Just Diagnosed
- HbA1C 7.3%
Natural History of Type 2 Diabetes

- Obesity
- IFG*
- Diabetes
- Uncontrolled Hyperglycemia

Glucose (mg/dL)

Relative Function (%)

- Fasting Glucose
- Post-meal Glucose
- Insulin Resistance
- Insulin Level

At Risk

β-Cell Failure

Years of Diabetes

*IFG=impaired fasting glucose.

Therapy of Diabetes

- Diet
- Exercise
- Medications
Natural History of Type 2 Diabetes

Glucose (mg/dL)

- Post-meal Glucose
- Fasting Glucose

Relative Function (%)

- Insulin Resistance
- Insulin Level

Years of Diabetes

IFG=impaired fasting glucose.

Major Targeted Sites of Drug Classes

- Pancreas
- Liver
- Gut
- Muscle and fat

Hepatic glucose overproduction

Insulin resistance

Glucose Absorption

β-cell Dysfunction

Sulfonylureas

Meglitinides

Glucose level

Insulin Resistance
Therapeutic Options

Sulfonylureas

<table>
<thead>
<tr>
<th>Positives</th>
<th>Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Efficacious</td>
<td>- Hypoglycemia</td>
</tr>
<tr>
<td>- Long Experience</td>
<td>- Weight Gain</td>
</tr>
<tr>
<td>- Inexpensive</td>
<td>- Primary + Secondary Failure</td>
</tr>
</tbody>
</table>

Meglitinides

<table>
<thead>
<tr>
<th>Positives</th>
<th>Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Efficacious</td>
<td>- Hypoglycemia, Less Than SU</td>
</tr>
<tr>
<td>- Fairly Long Experience</td>
<td>- Weight Gain</td>
</tr>
<tr>
<td></td>
<td>- TID Dosing</td>
</tr>
<tr>
<td></td>
<td>- Expensive</td>
</tr>
</tbody>
</table>
GLP-1 Modes of Action in Humans

Upon Ingestion of Food...
- Stimulates Insulin Secretion
- Suppresses Glucagon
- Slows Gastric Emptying
- Reduces Food Intake

GLP-1 Is Secreted From the L-cells In the Intestine

This in Turn...

One More Point
Going Back to Those β Cells.....
Natural History of Type 2 Diabetes

*IFG=impaired fasting glucose.

β-cell Neogenesis, Proliferation and Apoptosis

- GLP-1 Stimulates Islet Neogenesis
- GLP-1 Inhibits Apoptosis
Glucose Dependent Effects of GLP-1

Type 2 Diabetics (n=10)

Mean (se) <p.05

GLP-1 Effect : Blocked By DPP-4

Mixed Meal
- Intestinal GLP-1 Secretion
 - GLP-1(7-36) Active
 - DPP-IV
 - GLP-1(9-36) Inactive
- Rapid Inactivation
- Renal Clearance

Plasma

Deacon et al. Diabetes 1995; 44:1126
GLP-1: Rapidly Degraded by DPP-4

Mentlein, R Regulatory Peptides 85:9-24, 1999

Secreted GLP-1 Rapidly Degraded

- GLP-1 (green) released into intestinal capillaries is immediately exposed to DPP-4 (red)¹
- >50% of secreted GLP-1 is already degraded before it reaches the general circulation²
- >40% of circulating GLP-1 is already degraded before it reaches β-cells²

¹Hansen L. et al. Endocrinology. 1999;140:5356-5363;
Enhance GLP-1 Effect By…

GLP-1 AGENTS

- Exenatide sc (Byetta)
- Liraglutide (Victoza) sc
- Albglutide sc

GLP-1 Agents

The Good:
- Decrease Post-Prandial Glucose
- No Hypoglycemia
- Potential For Weight Loss
- Perhaps β Cell Preservation

The Not So Good:
- GI Upset
- Injection
- Rare Reports Of Pancreatitis
- Cost
Enhance GLP-1 Effect By...

GLP-1 AGENTS
- Exenatide sc (Byetta)
- Liraglutide sc (Victoza)
- Albglutide sc

DPP-4 INHIBITORS
- Sitagliptin (Januvia) po
- Saxagliptin (Onglyza) po
- Linagliptin (Tradjenta) po
- Vildagliptin (Galvus) po
- Alogliptin po

DPP-4 Inhibitors

The Good:
- Decrease Post-Prandial Glucose
- No Hypoglycemia
- Weight Neutral
- Safe In Renal Disease
- No GI Upset
- Perhaps β Cell Preservation

The Not So Good:
- Short Experience
- Cost
Therapeutic Options

Biguanide

Positives
- Efficacious
- Long Experience
- Inexpensive
- Weight Loss

Negatives
- GI Upset
- Caution With Renal Disease
- Hold For Dye Procedures/Surgery

Therapeutic Options

TZDs

Positives
- Efficacious
- Reasonably Long Experience
- No Hypoglycemia
- β Cell Preservation

Negatives
- Increased CV Risk?
- Edema
- Weight Gain
- Fractures
TZD’s... Be Careful In Patients With CHF

Another TZD Concern ⇔

Increased Fractures In Women (Extra-Vertebral)
Major Targeted Sites of Drug Classes

- **Pancreas**
 - Decreased Glucose level
 - Sulfonlureas
 - Meglitinides
 - GLP-1 Agents
 - DPP 4 Inhibitors

- **Gut**
 - Glucosidase Inhibitors

- **Liver**
 - Hepatic glucose overproduction
 - Biguanides
 - TZDs

- **Muscle and fat**
 - Insulin resistance

Therapeutic Options

α Glucosidase Inhibitors

Positives
- Reasonably Long Experience
- No Hypoglycemia
- No Weight Gain

Negatives
- Only Mildly Efficacious
- GI Intolerance
New Oral Agents For Diabetes

Dopamine Receptor Agonists

Sodium-Glucose Transport Inhibitors (SGLT’s)

Low Dose Rapid Acting
Bromocriptine

- Dopamine Receptor Agonist (Cycloset)

- Increases Brain Dopamine To Reduce Insulin Resistance → Reduces Glucose, BP and Lipids

- Lowers A1C, BP and CV Risk
New Oral Agents For Diabetes

Sodium-Glucose Transport Inhibitors (SGLT’s)

Inhibit Sodium Glucose Co-transporter-2

↓

↓

Prevent Reabsorption Of Glucose In Renal Tubules

Therapeutic Progression

Combination Pills for Type 2 Diabetes

- Glyburide/Metformin (Glucovance)
- Glipizide/Metformin (Metaglip)
- Pioglitazone/Metformin (ActoPlusMet)
- Glimepiride/Pioglitazone (DuetAct)
- Sitagliptin/Metformin (Janumet)
- Saxaglitin/Metformin (Kombiglyze)

Case Study

- 58 Year Old Journalist
- Type 2 DM Just Diagnosed
- HbA1C 7.3%
- Metformin Started
Case Study

3 Months Later

- 58 Year Old Journalist
- Type 2 DM Just Diagnosed
- On Metformin
- Hb A1C 6.2%

Case Study

3 Years Later

- 61 Year Old Journalist
- Type 2 DM X 3 Years
- On Metformin
- Hb A1C 8.9%
Decisions, Decisions

- Failure On 1 Oral Agents
- Add 2nd Oral Agent
- Add GLP-1 Agent
- Add Insulin

Case Study

- 61 Year Old Journalist
- Type 2 DM X 3 Years
- On Metformin
- Hb A1C 8.9%
- Second Oral Agent Added
Case Study

3 Months Later

- 61 Year Old Journalist
- Type 2 DM x 3 Years
- On Metformin + Second Oral Agent
- Hb A1C 6.9%

Case Study

1 Year Later

- 62 Year Old Journalist
- Type 2 DM X 4 Years
- On Metformin + Second Oral Agent
- HbA1C 9.6%
What To Do If/When Two Oral Agents Are Not Enough?

Decisions, Decisions...

Failure On 2 Oral Agents

Add 3rd Oral Agent
Add GLP-1 Agent
Add Insulin
Physiologic Insulin Secretion:
Basal/Bolus Concept

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Basal Glucose</th>
<th>Prandial Glucose</th>
<th>Basal Insulin</th>
<th>Prandial Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.M.</td>
<td>150</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>P.M.</td>
<td>50</td>
<td>75</td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

A Basic Principle:
Fix The Fasting First
Currently Available Basal Insulins

- Neutral Protamine Hagedorn (1946)
- Insulin Glargine (2001)
- Insulin Detemir (2006)

Keep The Sulfonylurea, Tide, or The Gliptin On Board To Drive The β Cell For Mealtime Coverage!
Starting Basal Insulin

Continue Oral Agent(s) at Same Dosage
(Eventually Reduce)
Add Single Insulin Dose (~ 15 units)
 ✔ Glargine (Anytime)
 ✔ Increase Insulin Dose 1 unit Daily Until
 FBS<100mg &/or HbA1C < 7%
Case Study

- 62 Year Old Journalist
- Type 2 DM x 4 Years
- On Metformin + Second Oral Agent
- Hb A1C 9.6%
- Basal Insulin Added

4 Months Later

- 62 Year Old Journalist
- Type 2 DM X 4 Years
- On Metformin + Second Oral Agent + Basal Insulin
- Hb A1C 6.9%
Case Study
2 Years Later

- 64 Year Old Journalist
- Type 2 DM x 7 Years
- On Metformin + Second Oral Agent + Basal Insulin
- HbA1C 7.8% With Fasting Sugars Between 100 and 110 mg%

What’s Going On?

Postprandial Glucose Must Be Elevated
BOLUS INSULIN...

Currently Available Bolus Insulins

- Regular (1921)
- Insulin Lispro (1996)
- Insulin Aspart (2000)
- Insulin Glulisine (2006)
Insulin Profiles

- Aspart, Lispro, Glulisine
- Regular

Plasma Insulin Levels vs. Time (hr)

- Rule Of Thumb For Glargine:
 - 50% Basal
 - 50% Prandial, Divided Over 3 Meals

Bolus Insulin

- Add Rapid Acting Insulin For Mealtime Coverage

Rosenstock J. Clin Cornerstone. 2001;4:50
Glucose Patterns in Type 2 Diabetes Mellitus

Continue SU/Tide/DPP-4 Inhibitor, Metformin, TZD

Case Study
3 Months Later

- 64 Year Old Journalist
- Type 2 DM x 7 Years
- On Metformin + Second Oral Agent + Basal Insulin + 1 Shot Bolus Insulin
- HbA1C 6.7%
Case Study

2 Years Later

- 66 Year Old Journalist
- Type 2 DM X 9 Years
- On Metformin + Second Oral Agent + Basal Insulin + 1 Shot Bolus Insulin
- Hb A1C 9.8%

Glucose Patterns in Type 2 Diabetes Mellitus

Discontinue SU/Tide/DPP-4 Inhibitor; Continue Metformin, TZD
Fine Tuning The Bolus

The Bolus Has 2 Components:

- **Prandial**
- Fine Tune By Carbohydrate Counting
- **Correction Factor**
- Adjustment For Pre-Meal Hyperglycemia

Case Study

- 66 Year Old Journalist
- Type 2 DM x 9 Years
- On Metformin + Second Oral Agent* + Basal Insulin + Bolus Insulin Before Each Meal
- HbA1C 6.9%

*If 2nd oral agent is SU, it should be discontinued.