Pulmonary “Tests”

“What a Loyola MS 3 should know about Oxygenation, CO₂ elimination, and PFT’s”

Learning Objectives

- **Oxygenation:**
 - Distinguish the various mechanisms of hypoxia
 - Know how to calculate the A-a Gradient
 - Understand oxygen content, delivery, and extraction
 - Recognize the various oxygen delivery devices

- **CO₂ Elimination:**
 - Know the principles determining one’s CO₂
 - Understand the concept of Dead Space Ventilation

- **PFT’s:**
 - Be able to interpret PFT’s recognizing Obstruction, Restriction, and Diffusion Impairments

Approach to Hypoxemia

- **Disease-Based**
 - COPD/Asthma
 - Pulmonary Edema
 - ARDS
 - Pneumonia
 - ILD
 - Hypoventilation
 - Altitude
 - Decreased FIO2
 - Cirrhosis
 - Pulmonary Embolism

- **Mechanism-Based**
 - VQ Mismatch
 - Shunt
 - Diffusion Impairment
 - Hypoventilation
 - Decreased Barometric Pressure
 - Decreased FIO₂
 - Diffusion-Perfusion Impairment
 - Mixed

Mechanisms of Hypoxia: VQ Mismatch

- Decreased V relative to Q
- O₂ exits alveolus more quickly than enters via bronchi
- Hypoxia is MILD
- Hypoxia improves with supplemental O₂
- Causes:
 - Asthma, COPD
 - Pulmonary Emboli
 - ILD

Mechanisms of Hypoxia: Shunt

- No O₂ reaches some set of pulmonary capillaries
- Hypoxia is SEVERE
- Hypoxia does NOT improve with supplemental O₂
- Causes:
 - Pulmonary Shunt:
 - NO ventilation to alveoli that are still perfused
 - PFO
 - ASD
 - VSD
 - Pulmonary Emboli
 - ARDS
 - Pulmonary AVM
 - Cardiac Shunt

Normal Physiology

- No obstruction
- No alveolar filling process
- No diffusion barrier
- Ventilation roughly equals Perfusion
- More of both at the bases
- Less of both at the apices
- O₂ from the bronchus enters the alveolus as rapidly as O₂ leaves into the pulmonary capillaries/systemic circulation

\[P_{mvO₂} = 40 \text{ mmHg} \quad P_{aO₂} = 100 \text{ mm Hg} \]
Mechanisms of Hypoxia:

Shunt

- No O$_2$ reaches some set of pulmonary capillaries
- Hypoxia is SEVERE
- Hypoxia does NOT improve with supplemental O$_2$

Causes:
- Pulmonary Shunt:
 - NO ventilation to alveoli that are still perfused
 - Blood
 - Pus
 - Water
 - Pulmonary Edema
 - ARDS
 - Atelectasis
 - Pulmonary AVM
- Cardiac Shunt
 - PFO, ASD, VSD

Mechanisms of Hypoxia:

Diffusion Impairment

- NOT a common problem
 - Blood is normally fully oxygenated within 25% of its transit through the alveolar capillaries.
 - Therefore, even if slowed by a diffusion barrier, blood usually reaches full saturation
- Hypoxia is MILD
- Hypoxia improves with supplemental O$_2$

Mechanisms of Hypoxia:

Diffusion-Perfusion Impairment

- Seen occasionally in cirrhosis
- Dilated capillaries pose an impairment to full oxygenation

Mechanisms of Hypoxia

- VQ Mismatch
- Shunt
- Diffusion Impairment
- Diffusion-Perfusion Impairment
- Hypoventilation
- Altitude
- Decreased F$_2$O$_2$

The A-a Gradient
Two Questions

1. Which of these people has a lower than expected \(P_{\text{O}_2} \)?
 - A. A MS3 in SSOM with a \(P_{\text{O}_2} = 95 \)
 - B. 72 yo Doc Hering in SSOM with a \(P_{\text{O}_2} = 80 \)
 - C. 50 yo Dr. Michelfelder in flight with a \(P_{\text{O}_2} = 50 \)
 - D. A MS3 running at top speed with a \(P_{\text{O}_2} = 70 \)

2. Which ABG illustrates abnormal \(O_2 \) Transfer from Alveolus to Capillary?
 - A. \(\text{PaCO}_2 = 40 \), \(\text{PaO}_2 = 95 \)
 - B. \(\text{PaCO}_2 = 60 \), \(\text{PaO}_2 = 70 \)
 - C. \(\text{PaCO}_2 = 20 \), \(\text{PaO}_2 = 95 \)

Write your answers down...

The A – a Gradient

1. Mathematically = \(\text{P}_{\text{AlvO}_2} - \text{P}_{\text{aO}_2} \)

 Why is there any gradient?
 - Normal Anatomic and Physiologic Shunting
 - The A-a is normally less than age/4 + 4
 - A higher A-a gradient implies “disease” decreasing the efficiency of oxygen transfer from the atmosphere to the arterial circulation

2. Answers the question:
 - Is your patient’s \(\text{PaO}_2 \) ‘normal’?

Under “normal” circumstances….

… breathing room air at sea level

A “normal” Alveolar \(O_2 \) is:

\[
\text{AlvO}_2 = \left((\text{PB} - \text{P}_{\text{H}_2\text{O}}) \times \text{FIO}_2 \right) - \left(\text{PaCO}_2 / \text{RQ} \right)
\]

\[
\text{PaO}_2 \text{ from ABG = 150 - (40/0.8)} = 59 \text{ mmHg}
\]

Therefore, \(\text{P}_{\text{AlvO}_2} \) normally* = 150 - 50 = 100

*But … \(\text{P}_{\text{B}}, \text{FIO}_2, \text{PaCO}_2, \) and \(\text{RQ} \) can all be manipulated

The Answers:

1. Which of these people has a lower than expected \(P_{\text{O}_2} \)?
 - A. A MS3 in SSOM with a \(P_{\text{O}_2} = 95 \)
 - B. 72 yo Doc Hering in SSOM with a \(P_{\text{O}_2} = 80 \)
 - C. 50 yo Dr. Michelfelder in flight with a \(P_{\text{O}_2} = 50 \)
 - D. A MS3 running at top speed with a \(P_{\text{O}_2} = 70 \)

2. Which ABG illustrates abnormal \(O_2 \) Transfer from Alveolus to Capillary?
 - A. \(\text{PaCO}_2 = 40 \), \(\text{PaO}_2 = 95 \)
 - B. \(\text{PaCO}_2 = 60 \), \(\text{PaO}_2 = 70 \)
 - C. \(\text{PaCO}_2 = 20 \), \(\text{PaO}_2 = 95 \)

Patient A is simply what we expect
Patient B is simply hypo-ventilating
Patient C is has SIGNIFICANTLY abnormal oxygen transfer despite an overly normal \(\text{PaO}_2 \)!!!
Clinical Question
- Treatment for *pneumocystis jiroveci* pneumonia in a patient whose ABG is 7.48/30/70 on room air?

How to describe the “degree” of hypoxia
- The “P/F” Ratio
 - $P_{a}O_2/FIO_2$
 - Normally...
 - $P_{a}O_2/FIO_2 \times 100/0.2 = 500$
 - Lower P/F Ratios imply worsening degrees of hypoxia
 - $P/F < 200$ is bad enough hypoxia to count as ARDS

Other Oxygen Issues:
- How many mL of O_2 are in each dL of:
 - arterial blood?
 - venous blood?
- How much many mL of O_2 are delivered per minute to the tissues?
- What percent of the delivered O_2 is extracted by the tissues at rest?
- How are these numbers useful clinically?

Oxygen Content
- Conceptually:
 - Oxygen is carried in the blood as both:
 - Hemoglobin-Bound Oxygen
 - Dissolved Oxygen

Mathematically:
- $C_{a}O_2 = (Hgb)(S_{O_2})(1.34) + (P_{a}O_2)(0.003)$
- $C_{v}O_2 = (15)(1)(1.34) + (95)(0.003)$
 - ≈ 20 mL O_2/dL Blood
- $C_{mv}O_2 = (15)(0.75)(1.34) + (40)(0.003)$
 - ≈ 15 mL O_2/dL blood
- $D_{a-v}O_2 = C_{a}O_2 - C_{mv}O_2$
 - $= 20 - 15 = 5$ mL O_2/dL blood
 - i.e., the difference in O_2 content between arterial and venous blood

Oxygen Delivery
- Conceptually:
 - The amount of oxygen delivered to the tissues is the product of cardiac output and oxygen content.

Mathematically:
- $D_{a}O_2 = C.O. \times C_{a}O_2$
 - $= 5$ Lpm $\times 20$ mL O_2/dL (x 10 dL/L)
 - $= 1000$ mL O_2/min
Oxygen Extraction

- \(\text{VO}_2 = \text{Oxygen Consumption} \)
 - Normal = 250 cc/min at rest
- Extraction Ratio
 - % of delivered oxygen actually consumed
 - At rest:
 - 250 cc/min consumed
 - 1000 cc/min delivered
 - ER = 25%
 - Can increase to 75%

Oxygen Content, Delivery, Extraction: Summary

- Evidence of Inadequate Delivery relative to Consumption:
 - \(\dot{\text{CmvO}}_2 \)
 - \(\dot{\text{DAvO}}_2 \)
 - \(\dot{\text{ER}} \)

Oxygen Delivery Devices

- Nasal Cannula
 - 24-44% \(\text{F}_O_2 \)
 - \(\text{F}_O_2 \) increases ~ 3% for each additional liter per minute
- Simple Face Mask
 - 40-60% \(\text{F}_O_2 \)
- Non-Rebreather Mask
 - "reservoir" with one-way valve
 - 60-100% \(\text{F}_O_2 \)
- Venturi Mask
 - Includes a valve allowing "precise" \(\text{F}_O_2 \) delivery
 - ? Advantage for COPD patients
 - 24-60% \(\text{F}_O_2 \)
Oxygen Delivery Devices

- Optiflow®
 - "Nasal High Flow Oxygen"
 - Heated and Humidified
 - "Flushes" out dead space
 - Provides a tiny amount of CPAP
 - Up to 100% FIO₂

Oxygen Delivery Devices

- Nasal Cannula
 - 24-44% FIO₂
- Simple Face Mask
 - 40–60% FIO₂
- Non-Rebreather Mask
 - 60-100% FIO₂
- Venturi Mask
 - 24-60% FIO₂
- Nasal HF O₂
 - Up to 100% FIO₂

What about PₐCO₂?

Conceptually:
- PₐCO₂ depends upon how much CO₂ is produced vs how much is eliminated.
- CO₂ elimination depends upon Alveolar Ventilation.
 - i.e., Total Ventilation minus Wasted Ventilation

Hence, the determinants of PₐCO₂ are:
- CO₂ Production
- Total Minute Ventilation
- Wasted Ventilation (i.e., "dead space" or VD/VT)

Mathematically...

\[PₐCO₂ \propto \frac{VCO₂}{MV \times (1 - VD/VT)} \]

- VCO₂ = CO₂ Production
 - Normal = 200 ml/min
 - Increases in VCO₂ are not a clinically relevant cause of hypercapnea
- MV = Minute Ventilation
 - Normal = 5 lpm at rest
 - Up to 100 lpm at maximum aerobic activity
 - Obviously, hypoventilation leads to hypercapnea
- Therefore, if there is no increased VCO₂ or decreased MV, hypercapnea must be due to increased VD/VT

Dead Space?

\[PₐCO₂ \propto \frac{VCO₂}{MV \times (1 - VD/VT)} \]

- VD/VT = "Dead Space" Ventilation
 - i.e., the percent of each tidal volume which does NOT participate in gas exchange
 - Includes 'anatomic' dead space
 - i.e., the air in the trachea and bronchi down to the conducting airways
 - And includes physiologic dead space
 - i.e., air in alveoli that nonetheless is not participating in gas exchange
- Three Questions:
 - How much dead space is normal?
 - What are causes of increased dead space?
 - What is the consequence of increased dead space?

Normal:
- VT ≥ 500 cc
- VO ≥ 1 cc/pound ≥ 150cc
- VD/VT ≥ 150/500 ≥ 30% of an average TV
VD/VT

Causes of increased VD/VT:
- Decreased Perfusion of Ventilated Lung:
 - Pulmonary Emboli
 - Pulmonary Hypertension
 - Volume Depletion
- Increased Alveolar Pressures:
 - PEEP (mechanical ventilation)
 - auto-PEEP (emphysema)

Why does it matter?
- If increased VD/VT, one must increase minute ventilation which increases work of breathing.
- Think of increased VD/VT, whenever:
 - Increased P_aCO_2
 - And/OR
 - Normal P_aCO_2 with increased MV

PFT’s – practically speaking....
- Calculate expected values:
 - Age
 - Height
 - Sex
 - Race
- Measure patient values
- Compare
 - “normal” is defined by measured values that are between 80% and 120% of the predicted values

PFT’s: 3 Main Components
- Spirometry
 - FEV_1/FVC
 - Asthma
 - COPD
 - Bronchiectasis
- Lung Volumes
 - TLC
 - Interstitial Disease
 - Chest Wall Disease
 - Neuromuscular Disease
- Diffusing Capacity
 - DLCO
 - Pulmonary HTN
 - Associated with COPD and/or ILD
 - Isolated = Primary Pulmonary HTN